一种高效的深层双向变压器能量分解模型

S. Sykiotis, Maria Kaselimi, A. Doulamis, N. Doulamis
{"title":"一种高效的深层双向变压器能量分解模型","authors":"S. Sykiotis, Maria Kaselimi, A. Doulamis, N. Doulamis","doi":"10.23919/eusipco55093.2022.9909768","DOIUrl":null,"url":null,"abstract":"In this study, we present TransformNILM, a novel Transformer based model for Non-Intrusive Load Monitoring (NILM). To infer the consumption signal of household appliances, TransformNILM employs Transformer layers, which utilize attention mechanisms to successfully draw global dependencies between input and output sequences. Trans-formNILM does not require data balancing and operates with minimal dataset pre-processing. Compared to other Transformer-based architectures, TransformNILM instigates an efficient training scheme, where model training consists of unsupervised pre-training and supervised model fine-tuning, thus leading to decreased training time and improved predictive performance. Experimental results validate Trans-formNILM's superiority compared to several state of the art methods.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Deep Bidirectional Transformer Model for Energy Disaggregation\",\"authors\":\"S. Sykiotis, Maria Kaselimi, A. Doulamis, N. Doulamis\",\"doi\":\"10.23919/eusipco55093.2022.9909768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present TransformNILM, a novel Transformer based model for Non-Intrusive Load Monitoring (NILM). To infer the consumption signal of household appliances, TransformNILM employs Transformer layers, which utilize attention mechanisms to successfully draw global dependencies between input and output sequences. Trans-formNILM does not require data balancing and operates with minimal dataset pre-processing. Compared to other Transformer-based architectures, TransformNILM instigates an efficient training scheme, where model training consists of unsupervised pre-training and supervised model fine-tuning, thus leading to decreased training time and improved predictive performance. Experimental results validate Trans-formNILM's superiority compared to several state of the art methods.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了TransformNILM,一种新的基于变压器的非侵入式负载监测(NILM)模型。为了推断家用电器的消费信号,TransformNILM使用Transformer层,它利用注意机制成功地绘制输入和输出序列之间的全局依赖关系。Trans-formNILM不需要数据平衡,并以最小的数据集预处理进行操作。与其他基于transformer的架构相比,TransformNILM提供了一种高效的训练方案,其中模型训练包括无监督的预训练和有监督的模型微调,从而减少了训练时间并提高了预测性能。实验结果验证了Trans-formNILM与几种最先进方法相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Deep Bidirectional Transformer Model for Energy Disaggregation
In this study, we present TransformNILM, a novel Transformer based model for Non-Intrusive Load Monitoring (NILM). To infer the consumption signal of household appliances, TransformNILM employs Transformer layers, which utilize attention mechanisms to successfully draw global dependencies between input and output sequences. Trans-formNILM does not require data balancing and operates with minimal dataset pre-processing. Compared to other Transformer-based architectures, TransformNILM instigates an efficient training scheme, where model training consists of unsupervised pre-training and supervised model fine-tuning, thus leading to decreased training time and improved predictive performance. Experimental results validate Trans-formNILM's superiority compared to several state of the art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1