{"title":"Neural network approximation and estimation of functions","authors":"G. Cheang","doi":"10.1109/WITS.1994.513888","DOIUrl":null,"url":null,"abstract":"Approximation and estimation bounds were obtained by Barron (see Proc. of the 7th Yale workshop on adaptive and learning systems, 1992, IEEE Transactions on Information Theory, vol.39, pp.930-944, 1993 and Machine Learning, vol.14, p.113-143, 1994) for function estimation by single hidden-layer neural nets. This paper highlights the extension of his results to the two hidden-layer case. The bounds derived for the two hidden-layer case depend on the number of nodes T/sub 1/ and T/sub 2/ in each hidden-layer, and also on the sample size N. It is seen from our bounds that in some cases, an exponentially large number of nodes, and hence parameters, is not required.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

Barron(参见第7届耶鲁自适应和学习系统研讨会,1992,IEEE Transactions on Information Theory, vol.39, pp.930-944, 1993和Machine learning, vol.14, p.113-143, 1994)获得了单隐藏层神经网络函数估计的近似和估计边界。本文着重将其结果推广到两隐层情况。两个隐藏层情况的边界取决于每个隐藏层的节点数量T/sub 1/和T/sub 2/,也取决于样本大小n。从我们的边界可以看出,在某些情况下,不需要指数级的节点数量,因此不需要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network approximation and estimation of functions
Approximation and estimation bounds were obtained by Barron (see Proc. of the 7th Yale workshop on adaptive and learning systems, 1992, IEEE Transactions on Information Theory, vol.39, pp.930-944, 1993 and Machine Learning, vol.14, p.113-143, 1994) for function estimation by single hidden-layer neural nets. This paper highlights the extension of his results to the two hidden-layer case. The bounds derived for the two hidden-layer case depend on the number of nodes T/sub 1/ and T/sub 2/ in each hidden-layer, and also on the sample size N. It is seen from our bounds that in some cases, an exponentially large number of nodes, and hence parameters, is not required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1