基于金字塔深度卷积特征的指纹索引

Dehua Song, Jufu Feng
{"title":"基于金字塔深度卷积特征的指纹索引","authors":"Dehua Song, Jufu Feng","doi":"10.1109/BTAS.2017.8272699","DOIUrl":null,"url":null,"abstract":"The ridges of fingerprint contain enormous discriminative information for fingerprint indexing, however it is hard to depict the structure of ridges for rule-based methods because of nonlinear distortion. This paper investigates to represent the structure of ridges by Deep Convolutional Neural Network (DCNN). The indexing approach partitions the fingerprint image into increasing fine sub-region and extracts feature from each sub-region by DCNN, forming pyramid deep convolutional feature, to represent the global patterns and local details (especially minutiae). Extensive experimental results show that the proposed method achieves better performance on accuracy and efficiency than other prominent indexing approaches. Finally, occlusion sensitivity, visualization and fingerprint reconstruction techniques are employed to explore which attributes of ridges are described in deep convolutional feature.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Fingerprint indexing based on pyramid deep convolutional feature\",\"authors\":\"Dehua Song, Jufu Feng\",\"doi\":\"10.1109/BTAS.2017.8272699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ridges of fingerprint contain enormous discriminative information for fingerprint indexing, however it is hard to depict the structure of ridges for rule-based methods because of nonlinear distortion. This paper investigates to represent the structure of ridges by Deep Convolutional Neural Network (DCNN). The indexing approach partitions the fingerprint image into increasing fine sub-region and extracts feature from each sub-region by DCNN, forming pyramid deep convolutional feature, to represent the global patterns and local details (especially minutiae). Extensive experimental results show that the proposed method achieves better performance on accuracy and efficiency than other prominent indexing approaches. Finally, occlusion sensitivity, visualization and fingerprint reconstruction techniques are employed to explore which attributes of ridges are described in deep convolutional feature.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

指纹脊包含了大量的判别信息,可用于指纹索引,但基于规则的方法由于脊的非线性失真,难以描述脊的结构。本文研究了用深度卷积神经网络(Deep Convolutional Neural Network, DCNN)表示脊状结构的方法。索引方法将指纹图像划分为越来越细的子区域,并通过DCNN从每个子区域提取特征,形成金字塔深度卷积特征,以表示全局模式和局部细节(特别是细枝末节)。大量的实验结果表明,该方法在精度和效率上都优于其他常用的索引方法。最后,利用遮挡敏感性、可视化和指纹重建技术来探索哪些脊属性在深度卷积特征中被描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fingerprint indexing based on pyramid deep convolutional feature
The ridges of fingerprint contain enormous discriminative information for fingerprint indexing, however it is hard to depict the structure of ridges for rule-based methods because of nonlinear distortion. This paper investigates to represent the structure of ridges by Deep Convolutional Neural Network (DCNN). The indexing approach partitions the fingerprint image into increasing fine sub-region and extracts feature from each sub-region by DCNN, forming pyramid deep convolutional feature, to represent the global patterns and local details (especially minutiae). Extensive experimental results show that the proposed method achieves better performance on accuracy and efficiency than other prominent indexing approaches. Finally, occlusion sensitivity, visualization and fingerprint reconstruction techniques are employed to explore which attributes of ridges are described in deep convolutional feature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1