使用暹罗网络和快速文本表示的受损Tweet检测

Mihir Joshi, Parmeet Singh, A. N. Zincir-Heywood
{"title":"使用暹罗网络和快速文本表示的受损Tweet检测","authors":"Mihir Joshi, Parmeet Singh, A. N. Zincir-Heywood","doi":"10.23919/CNSM46954.2019.9012722","DOIUrl":null,"url":null,"abstract":"The aim of this work is to detect compromised users of tweets based on their writing styles. In this paper, we use Siamese Networks to learn a representation of user tweets that allows us to classify them based on a limited amount of ground truth data. We propose the employment of this classification model to identify compromised user accounts of tweets.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compromised Tweet Detection Using Siamese Networks and fastText Representations\",\"authors\":\"Mihir Joshi, Parmeet Singh, A. N. Zincir-Heywood\",\"doi\":\"10.23919/CNSM46954.2019.9012722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to detect compromised users of tweets based on their writing styles. In this paper, we use Siamese Networks to learn a representation of user tweets that allows us to classify them based on a limited amount of ground truth data. We propose the employment of this classification model to identify compromised user accounts of tweets.\",\"PeriodicalId\":273818,\"journal\":{\"name\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM46954.2019.9012722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作的目的是根据他们的写作风格来检测受感染的推文用户。在本文中,我们使用Siamese Networks来学习用户推文的表示,使我们能够基于有限数量的真实数据对它们进行分类。我们建议使用这种分类模型来识别推文的受损用户帐户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compromised Tweet Detection Using Siamese Networks and fastText Representations
The aim of this work is to detect compromised users of tweets based on their writing styles. In this paper, we use Siamese Networks to learn a representation of user tweets that allows us to classify them based on a limited amount of ground truth data. We propose the employment of this classification model to identify compromised user accounts of tweets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow-based Throughput Prediction using Deep Learning and Real-World Network Traffic Learning From Evolving Network Data for Dependable Botnet Detection Exploring NAT Detection and Host Identification Using Machine Learning Lumped Markovian Estimation for Wi-Fi Channel Utilization Prediction An Access Control Implementation Targeting Resource-constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1