基于网格的生物医学交互式决策支持

Alfredo Tirado-Ramos, P. Sloot, M. Bubak
{"title":"基于网格的生物医学交互式决策支持","authors":"Alfredo Tirado-Ramos, P. Sloot, M. Bubak","doi":"10.1002/9780470191637.CH10","DOIUrl":null,"url":null,"abstract":"A huge gap exists between what we know is possible with today's machines and what we have so far been able to finish. —Donald Knuth 1.1 INTRODUCTION The challenges discovered when studying humans as complex systems, from a biomedical viewpoint (from cells to interacting individuals), cover the whole spectrum from genome to health and cross temporal and spatial scales [1]. This includes studying biomedical issues using multiscale and multiscience models and techniques all the way from genomics to the macroscopic medical scale. This is also aggravated by the continuous increase in the amount of digital data produced by modern high-throughput biomedical detection and analysis systems. As reported by Hey et al., it is expected that larger amounts of digital data will be generated by next generations of large scale, collaborative e-Science experiments [2]. New experiments in science and engineering will cover the whole spectrum, from the simulation of complete biological systems, to cutting-edge research in bioinformatics. At the macroscopic scale, for instance, there are research efforts in biomedical informatics that are gradually pushing the boundaries of the state of the art, moving from monolitic software architectures to building more generic components. Such efforts normally leverage object-oriented and distributed component architectures to encapsulate or wrap legacy data in order to improve application interoperability and scalability [3, 4]. This allows for enhanced data and process flow at the macroscopic level, where models such as DICOM provide support for data acces from work stations to archiving and communications systems and back to hospitals' information systems.","PeriodicalId":164785,"journal":{"name":"Grid Computing for Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Grid-Based Interactive Decision Support in Biomedicine\",\"authors\":\"Alfredo Tirado-Ramos, P. Sloot, M. Bubak\",\"doi\":\"10.1002/9780470191637.CH10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A huge gap exists between what we know is possible with today's machines and what we have so far been able to finish. —Donald Knuth 1.1 INTRODUCTION The challenges discovered when studying humans as complex systems, from a biomedical viewpoint (from cells to interacting individuals), cover the whole spectrum from genome to health and cross temporal and spatial scales [1]. This includes studying biomedical issues using multiscale and multiscience models and techniques all the way from genomics to the macroscopic medical scale. This is also aggravated by the continuous increase in the amount of digital data produced by modern high-throughput biomedical detection and analysis systems. As reported by Hey et al., it is expected that larger amounts of digital data will be generated by next generations of large scale, collaborative e-Science experiments [2]. New experiments in science and engineering will cover the whole spectrum, from the simulation of complete biological systems, to cutting-edge research in bioinformatics. At the macroscopic scale, for instance, there are research efforts in biomedical informatics that are gradually pushing the boundaries of the state of the art, moving from monolitic software architectures to building more generic components. Such efforts normally leverage object-oriented and distributed component architectures to encapsulate or wrap legacy data in order to improve application interoperability and scalability [3, 4]. This allows for enhanced data and process flow at the macroscopic level, where models such as DICOM provide support for data acces from work stations to archiving and communications systems and back to hospitals' information systems.\",\"PeriodicalId\":164785,\"journal\":{\"name\":\"Grid Computing for Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grid Computing for Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9780470191637.CH10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grid Computing for Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470191637.CH10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在我们所知道的用今天的机器所能完成的和我们迄今为止所能完成的之间存在着巨大的差距。从生物医学的角度(从细胞到相互作用的个体),将人类作为复杂系统研究时所发现的挑战涵盖了从基因组到健康的整个光谱,并跨越了时空尺度[1]。这包括使用从基因组学到宏观医学尺度的多尺度和多科学模型和技术来研究生物医学问题。现代高通量生物医学检测和分析系统产生的数字数据量的不断增加也加剧了这种情况。据Hey等人报道,预计下一代大规模、协作的电子科学实验将产生更大量的数字数据[2]。科学和工程领域的新实验将涵盖整个领域,从完整生物系统的模拟到生物信息学的前沿研究。例如,在宏观尺度上,生物医学信息学方面的研究工作正在逐渐突破技术的极限,从单一的软件架构转向构建更通用的组件。这种努力通常利用面向对象和分布式组件架构来封装或包装遗留数据,以提高应用程序的互操作性和可伸缩性[3,4]。这允许在宏观层面上增强数据和流程流,其中DICOM等模型为从工作站到存档和通信系统以及返回医院信息系统的数据访问提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grid-Based Interactive Decision Support in Biomedicine
A huge gap exists between what we know is possible with today's machines and what we have so far been able to finish. —Donald Knuth 1.1 INTRODUCTION The challenges discovered when studying humans as complex systems, from a biomedical viewpoint (from cells to interacting individuals), cover the whole spectrum from genome to health and cross temporal and spatial scales [1]. This includes studying biomedical issues using multiscale and multiscience models and techniques all the way from genomics to the macroscopic medical scale. This is also aggravated by the continuous increase in the amount of digital data produced by modern high-throughput biomedical detection and analysis systems. As reported by Hey et al., it is expected that larger amounts of digital data will be generated by next generations of large scale, collaborative e-Science experiments [2]. New experiments in science and engineering will cover the whole spectrum, from the simulation of complete biological systems, to cutting-edge research in bioinformatics. At the macroscopic scale, for instance, there are research efforts in biomedical informatics that are gradually pushing the boundaries of the state of the art, moving from monolitic software architectures to building more generic components. Such efforts normally leverage object-oriented and distributed component architectures to encapsulate or wrap legacy data in order to improve application interoperability and scalability [3, 4]. This allows for enhanced data and process flow at the macroscopic level, where models such as DICOM provide support for data acces from work stations to archiving and communications systems and back to hospitals' information systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular Docking Using Grid Computing Deployment of Grid Life Sciences Applications Multiple Sequence Alignment and Phylogenetic Inference DNA Fragment Assembly Using Grid Systems Data Syndication Techniques for Bioinformatics Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1