放松管制电力市场随机模型的竞争协同进化方法

A. Tiguercha, A. A. Ladjici, M. Boudour
{"title":"放松管制电力市场随机模型的竞争协同进化方法","authors":"A. Tiguercha, A. A. Ladjici, M. Boudour","doi":"10.1109/ENERGYCON.2014.6850475","DOIUrl":null,"url":null,"abstract":"the main purpose of the paper is to calculate supplier's optimal biding in a deregulated electricity market, by calculating the Nash equilibrium strategies. In this paper we present the use of competitive coevolutionary algorithm in order to find the optimal biding strategies. A computational Algorithm has been developed to find Nash equilibrium strategies where a stochastic programming model is proposed to maximize the expected profits taking into account the stochastic aspect of spot market parameters. The key feature of our approach is the combination of a powerful learning algorithm to find the optimal strategies, and a scenario formulation to model the market uncertainties through. Each market agents is modeled as an adaptive evolutionary agent learning from market interactions and take part in the forward and spot transactions to act strategically to maximize their profits.","PeriodicalId":410611,"journal":{"name":"2014 IEEE International Energy Conference (ENERGYCON)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Competitive co-evolutionary approach to stochastic modeling in deregulated electricity market\",\"authors\":\"A. Tiguercha, A. A. Ladjici, M. Boudour\",\"doi\":\"10.1109/ENERGYCON.2014.6850475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the main purpose of the paper is to calculate supplier's optimal biding in a deregulated electricity market, by calculating the Nash equilibrium strategies. In this paper we present the use of competitive coevolutionary algorithm in order to find the optimal biding strategies. A computational Algorithm has been developed to find Nash equilibrium strategies where a stochastic programming model is proposed to maximize the expected profits taking into account the stochastic aspect of spot market parameters. The key feature of our approach is the combination of a powerful learning algorithm to find the optimal strategies, and a scenario formulation to model the market uncertainties through. Each market agents is modeled as an adaptive evolutionary agent learning from market interactions and take part in the forward and spot transactions to act strategically to maximize their profits.\",\"PeriodicalId\":410611,\"journal\":{\"name\":\"2014 IEEE International Energy Conference (ENERGYCON)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Energy Conference (ENERGYCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYCON.2014.6850475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCON.2014.6850475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要目的是通过计算纳什均衡策略来计算在解除管制的电力市场中供应商的最优出价。在本文中,我们使用竞争协同进化算法来寻找最优的竞价策略。提出了一种求解纳什均衡策略的计算算法,并在考虑现货市场参数随机性的情况下,提出了一种使预期利润最大化的随机规划模型。我们的方法的关键特点是结合了一个强大的学习算法来找到最优策略,和一个场景公式来模拟市场的不确定性。每个市场主体都被建模为一个自适应进化主体,从市场互动中学习,并参与远期和现货交易,采取战略行动,以实现利润最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Competitive co-evolutionary approach to stochastic modeling in deregulated electricity market
the main purpose of the paper is to calculate supplier's optimal biding in a deregulated electricity market, by calculating the Nash equilibrium strategies. In this paper we present the use of competitive coevolutionary algorithm in order to find the optimal biding strategies. A computational Algorithm has been developed to find Nash equilibrium strategies where a stochastic programming model is proposed to maximize the expected profits taking into account the stochastic aspect of spot market parameters. The key feature of our approach is the combination of a powerful learning algorithm to find the optimal strategies, and a scenario formulation to model the market uncertainties through. Each market agents is modeled as an adaptive evolutionary agent learning from market interactions and take part in the forward and spot transactions to act strategically to maximize their profits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bad data validation on the basis of a posteriori analysis Smart grid investment and technology roadmap for power system planning. Case study for a distribution system operator: EAECSA A discussion of reactive power control possibilities in distribution networks dedicated to generation Comparison of voltage control methods for incrementing active power production Calculating negative LMPs from SOCP-OPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1