利用LRU插入优先级的长期时间缓存访问模式

Shane Carroll, Wei-Ming Lin
{"title":"利用LRU插入优先级的长期时间缓存访问模式","authors":"Shane Carroll, Wei-Ming Lin","doi":"10.1142/S0129626421500109","DOIUrl":null,"url":null,"abstract":"In a CPU cache utilizing least recently used (LRU) replacement, cache sets manage a buffer which orders all cache lines in the set from LRU to most recently used (MRU). When a cache line is brought into cache, it is placed at the MRU and the LRU line is evicted. When re-accessed, a line is promoted to the MRU position. LRU replacement provides a simple heuristic to predict the optimal cache line to evict. However, LRU utilizes only simple, short-term access patterns. In this paper, we propose a method that uses a buffer called the history queue to record longer-term access-eviction patterns than the LRU buffer can capture. Using this information, we make a simple modification to LRU insertion policy such that recently-recalled blocks have priority over others. As lines are evicted, their addresses are recorded in a FIFO history queue. Incoming lines that have recently been evicted and now recalled (those in the history queue at recall time) remain in the MRU for an extended period of time as non-recalled lines entering the cache thereafter are placed below the MRU. We show that the proposed LRU insertion prioritization increases performance in single-threaded and multi-threaded workloads in simulations with simple adjustments to baseline LRU.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Long-Term Temporal Cache Access Patterns for LRU Insertion Prioritization\",\"authors\":\"Shane Carroll, Wei-Ming Lin\",\"doi\":\"10.1142/S0129626421500109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a CPU cache utilizing least recently used (LRU) replacement, cache sets manage a buffer which orders all cache lines in the set from LRU to most recently used (MRU). When a cache line is brought into cache, it is placed at the MRU and the LRU line is evicted. When re-accessed, a line is promoted to the MRU position. LRU replacement provides a simple heuristic to predict the optimal cache line to evict. However, LRU utilizes only simple, short-term access patterns. In this paper, we propose a method that uses a buffer called the history queue to record longer-term access-eviction patterns than the LRU buffer can capture. Using this information, we make a simple modification to LRU insertion policy such that recently-recalled blocks have priority over others. As lines are evicted, their addresses are recorded in a FIFO history queue. Incoming lines that have recently been evicted and now recalled (those in the history queue at recall time) remain in the MRU for an extended period of time as non-recalled lines entering the cache thereafter are placed below the MRU. We show that the proposed LRU insertion prioritization increases performance in single-threaded and multi-threaded workloads in simulations with simple adjustments to baseline LRU.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129626421500109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626421500109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在使用最近最少使用(LRU)替换的CPU缓存中,缓存集管理一个缓冲区,该缓冲区将集合中的所有缓存行从LRU排序到最近使用(MRU)。当缓存线被带入缓存时,它被放在MRU上,LRU线被驱逐。当重新访问时,一行被提升到MRU位置。LRU替换提供了一种简单的启发式方法来预测要退出的最优缓存行。然而,LRU只使用简单的短期访问模式。在本文中,我们提出了一种方法,该方法使用一个称为历史队列的缓冲区来记录比LRU缓冲区可以捕获的更长期的访问退出模式。使用这些信息,我们对LRU插入策略进行了简单的修改,使最近召回的块具有优先级。当行被驱逐时,它们的地址被记录在FIFO历史队列中。最近被驱逐并现在被召回的入行(在召回时处于历史队列中的行)将在MRU中保留较长时间,因为此后进入缓存的未召回行被放置在MRU下方。我们表明,通过对基线LRU进行简单调整,所提出的LRU插入优先级提高了模拟中单线程和多线程工作负载的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Long-Term Temporal Cache Access Patterns for LRU Insertion Prioritization
In a CPU cache utilizing least recently used (LRU) replacement, cache sets manage a buffer which orders all cache lines in the set from LRU to most recently used (MRU). When a cache line is brought into cache, it is placed at the MRU and the LRU line is evicted. When re-accessed, a line is promoted to the MRU position. LRU replacement provides a simple heuristic to predict the optimal cache line to evict. However, LRU utilizes only simple, short-term access patterns. In this paper, we propose a method that uses a buffer called the history queue to record longer-term access-eviction patterns than the LRU buffer can capture. Using this information, we make a simple modification to LRU insertion policy such that recently-recalled blocks have priority over others. As lines are evicted, their addresses are recorded in a FIFO history queue. Incoming lines that have recently been evicted and now recalled (those in the history queue at recall time) remain in the MRU for an extended period of time as non-recalled lines entering the cache thereafter are placed below the MRU. We show that the proposed LRU insertion prioritization increases performance in single-threaded and multi-threaded workloads in simulations with simple adjustments to baseline LRU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1