睡眠时的脑血流量和新陈代谢。

P L Madsen, S Vorstrup
{"title":"睡眠时的脑血流量和新陈代谢。","authors":"P L Madsen,&nbsp;S Vorstrup","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent data indicate that global levels of CBF and CMR are about the same during REM sleep as in wakefulness. On the regional level, deep sleep seems to be associated with a uniform decrease in regional CBF and CMR. Investigations concerning regional CBF and CMR during REM sleep are few but data from recent investigations seem to identify site-specific changes in regional CBF and CMR during REM sleep. CBF and CMR are reflections of cerebral synaptic activity and the magnitude of reduction in these variables associated with deep sleep indicates that overall cerebral synaptic activity is reduced to approximately one-half the level associated with wakefulness, while cerebral synaptic activity levels during REM sleep are similar to wakefulness. However, even though the new understanding of CBF and CMR during sleep provides significant and important information of the brain's mode of working during sleep, it does not at its current state identify the physiological processes involved in sleep or the physiological role of sleep.</p>","PeriodicalId":9739,"journal":{"name":"Cerebrovascular and brain metabolism reviews","volume":"3 4","pages":"281-96"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cerebral blood flow and metabolism during sleep.\",\"authors\":\"P L Madsen,&nbsp;S Vorstrup\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent data indicate that global levels of CBF and CMR are about the same during REM sleep as in wakefulness. On the regional level, deep sleep seems to be associated with a uniform decrease in regional CBF and CMR. Investigations concerning regional CBF and CMR during REM sleep are few but data from recent investigations seem to identify site-specific changes in regional CBF and CMR during REM sleep. CBF and CMR are reflections of cerebral synaptic activity and the magnitude of reduction in these variables associated with deep sleep indicates that overall cerebral synaptic activity is reduced to approximately one-half the level associated with wakefulness, while cerebral synaptic activity levels during REM sleep are similar to wakefulness. However, even though the new understanding of CBF and CMR during sleep provides significant and important information of the brain's mode of working during sleep, it does not at its current state identify the physiological processes involved in sleep or the physiological role of sleep.</p>\",\"PeriodicalId\":9739,\"journal\":{\"name\":\"Cerebrovascular and brain metabolism reviews\",\"volume\":\"3 4\",\"pages\":\"281-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebrovascular and brain metabolism reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebrovascular and brain metabolism reviews","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对睡眠引起的脑血流量(CBF)和脑代谢率(CMR)的变化进行了综述。早期的研究表明,无梦睡眠的特征是CBF和CMR的总体值实际上处于清醒水平,而快速眼动(REM)睡眠(有梦睡眠)的特征是CBF和CMR的水平急剧增加。然而,最近的调查坚决反驳了这一观点。考虑到不同睡眠水平的影响,在非快速眼动睡眠期间进行的CBF和CMR的研究表明,浅睡眠(II阶段)的特点是CBF和CMR的整体水平仅比清醒时的水平略微降低3-10%,而深度睡眠(III-IV阶段)的CBF和CMR则显著降低25-44%。此外,最近的数据表明,在快速眼动睡眠期间,CBF和CMR的整体水平与清醒时大致相同。在区域水平上,深度睡眠似乎与区域CBF和CMR的统一下降有关。关于快速眼动睡眠期间区域CBF和CMR的研究很少,但最近的调查数据似乎确定了快速眼动睡眠期间区域CBF和CMR的特定位点变化。CBF和CMR是大脑突触活动的反映,与深度睡眠相关的这些变量的减少幅度表明,大脑突触活动总体减少到清醒状态时的大约一半,而快速眼动睡眠期间的大脑突触活动水平与清醒状态相似。然而,尽管对睡眠中的脑血流和CMR的新认识提供了睡眠中大脑工作模式的重要信息,但它并没有在当前状态下识别睡眠中涉及的生理过程或睡眠的生理作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cerebral blood flow and metabolism during sleep.

A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent data indicate that global levels of CBF and CMR are about the same during REM sleep as in wakefulness. On the regional level, deep sleep seems to be associated with a uniform decrease in regional CBF and CMR. Investigations concerning regional CBF and CMR during REM sleep are few but data from recent investigations seem to identify site-specific changes in regional CBF and CMR during REM sleep. CBF and CMR are reflections of cerebral synaptic activity and the magnitude of reduction in these variables associated with deep sleep indicates that overall cerebral synaptic activity is reduced to approximately one-half the level associated with wakefulness, while cerebral synaptic activity levels during REM sleep are similar to wakefulness. However, even though the new understanding of CBF and CMR during sleep provides significant and important information of the brain's mode of working during sleep, it does not at its current state identify the physiological processes involved in sleep or the physiological role of sleep.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain damage due to cerebral hypoxia/ischemia in the neonate: pathology and pharmacological modification. The stress gene response in brain. Periinfarct depolarizations. Perfluorochemical oxygen carriers: potential uses in neurosciences. Cortical thermal clearance as a predictor of imminent neurological deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1