电力负荷的二元Copula建模,以Kwame Nkrumah科技大学为例

M. A. Boateng, F. Oduro-Gyimah, Daniel Kuyoli Ngala
{"title":"电力负荷的二元Copula建模,以Kwame Nkrumah科技大学为例","authors":"M. A. Boateng, F. Oduro-Gyimah, Daniel Kuyoli Ngala","doi":"10.1109/ICCMA.2019.00010","DOIUrl":null,"url":null,"abstract":"Dependence between random variables is a phenomenon that cannot be over emphasized. This study considered the dependence between consumption and maximum demand for a bulk electricity customer when it comes to its electricity load. The study applied the Clayton, Frank, Gumbel, Joe and Tawn Type 1 copulas to the realizations of the random variables (consumption and maximum demand). Considering the AICs and BICs of the models under study, the Tawn Type 1 copula model best represented the dependence between consumption and maximum demand. Using the inverse marginal distributions of both consumption and maximum demand, actual values were obtained from the pseudoobservations provided by the Tawn Type 1 copula. All the models revealed the presence of lower tail dependence between the two variables, with the exception of the Frank copula. The selected model was used to forecast load consumption and maximum demand.","PeriodicalId":413965,"journal":{"name":"2019 International Conference on Computing, Computational Modelling and Applications (ICCMA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bivariate Copula Modeling of Electricity Load, Case Study of Kwame Nkrumah University of Science and Technology\",\"authors\":\"M. A. Boateng, F. Oduro-Gyimah, Daniel Kuyoli Ngala\",\"doi\":\"10.1109/ICCMA.2019.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dependence between random variables is a phenomenon that cannot be over emphasized. This study considered the dependence between consumption and maximum demand for a bulk electricity customer when it comes to its electricity load. The study applied the Clayton, Frank, Gumbel, Joe and Tawn Type 1 copulas to the realizations of the random variables (consumption and maximum demand). Considering the AICs and BICs of the models under study, the Tawn Type 1 copula model best represented the dependence between consumption and maximum demand. Using the inverse marginal distributions of both consumption and maximum demand, actual values were obtained from the pseudoobservations provided by the Tawn Type 1 copula. All the models revealed the presence of lower tail dependence between the two variables, with the exception of the Frank copula. The selected model was used to forecast load consumption and maximum demand.\",\"PeriodicalId\":413965,\"journal\":{\"name\":\"2019 International Conference on Computing, Computational Modelling and Applications (ICCMA)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Computational Modelling and Applications (ICCMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMA.2019.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Computational Modelling and Applications (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA.2019.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机变量之间的相关性是一种无论怎么强调都不为过的现象。本研究考虑了大宗电力用户用电负荷与最大需求之间的依赖关系。本研究采用Clayton, Frank, Gumbel, Joe和Tawn的1型联结来实现随机变量(消费和最大需求)。考虑到所研究模型的aic和bic, Tawn 1型copula模型最能代表消费与最大需求之间的依赖关系。利用消费和最大需求的逆边际分布,从Tawn第1型copula提供的伪观测中获得了实际值。除Frank copula外,所有模型都显示两个变量之间存在低尾依赖性。利用所选模型对负荷消耗和最大需求进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bivariate Copula Modeling of Electricity Load, Case Study of Kwame Nkrumah University of Science and Technology
Dependence between random variables is a phenomenon that cannot be over emphasized. This study considered the dependence between consumption and maximum demand for a bulk electricity customer when it comes to its electricity load. The study applied the Clayton, Frank, Gumbel, Joe and Tawn Type 1 copulas to the realizations of the random variables (consumption and maximum demand). Considering the AICs and BICs of the models under study, the Tawn Type 1 copula model best represented the dependence between consumption and maximum demand. Using the inverse marginal distributions of both consumption and maximum demand, actual values were obtained from the pseudoobservations provided by the Tawn Type 1 copula. All the models revealed the presence of lower tail dependence between the two variables, with the exception of the Frank copula. The selected model was used to forecast load consumption and maximum demand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Analysis of Induced FM Radio Interferences on Aeronautical Radio Navigation Systems: Case Study of Kotoka International Airport, Accra-Ghana Modelling an Efficient Gap Filler for DTT Network Using ADS Software A Cryptographic Algorithm Based On Aes Cipher Andnondeterministic Algorithm Approach For Key Generation Evaluation of Inter-Cell Interference and BER on a Downlink PDSCH of the LTE Network Title Page i
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1