用DVFS自调优批处理提高服务器的性能和能源效率

Dazhao Cheng, Yanfei Guo, Xiaobo Zhou
{"title":"用DVFS自调优批处理提高服务器的性能和能源效率","authors":"Dazhao Cheng, Yanfei Guo, Xiaobo Zhou","doi":"10.1109/MASCOTS.2013.12","DOIUrl":null,"url":null,"abstract":"Performance improvement and energy efficiency are two important goals in provisioning Internet services in data center servers. In this paper, we propose and develop a self-tuning request batching mechanism to simultaneously achieve the two correlated goals. The batching mechanism increases the cache hit rate at the front-tier Web server, which provides the opportunity to improve application's performance and energy efficiency of the server system. The core of the batching mechanism is a novel and practical two-layer control system that adaptively adjusts the batching interval and frequency states of CPUs according to the service level agreement and the workload characteristics. The batching control adopts a self-tuning fuzzy model predictive control approach for application performance improvement. The power control dynamically adjusts the frequency of CPUs with DVFS in response to workload fluctuations for energy efficiency. A coordinator between the two control loops achieves the desired performance and energy efficiency. We implement the mechanism in a test bed and experimental results demonstrate that the new approach significantly improves the application's performance in terms of the system throughput and average response time. The results also illustrate it can reduce the energy consumption of the server system by 13% at the same time.","PeriodicalId":385538,"journal":{"name":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Self-Tuning Batching with DVFS for Improving Performance and Energy Efficiency in Servers\",\"authors\":\"Dazhao Cheng, Yanfei Guo, Xiaobo Zhou\",\"doi\":\"10.1109/MASCOTS.2013.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance improvement and energy efficiency are two important goals in provisioning Internet services in data center servers. In this paper, we propose and develop a self-tuning request batching mechanism to simultaneously achieve the two correlated goals. The batching mechanism increases the cache hit rate at the front-tier Web server, which provides the opportunity to improve application's performance and energy efficiency of the server system. The core of the batching mechanism is a novel and practical two-layer control system that adaptively adjusts the batching interval and frequency states of CPUs according to the service level agreement and the workload characteristics. The batching control adopts a self-tuning fuzzy model predictive control approach for application performance improvement. The power control dynamically adjusts the frequency of CPUs with DVFS in response to workload fluctuations for energy efficiency. A coordinator between the two control loops achieves the desired performance and energy efficiency. We implement the mechanism in a test bed and experimental results demonstrate that the new approach significantly improves the application's performance in terms of the system throughput and average response time. The results also illustrate it can reduce the energy consumption of the server system by 13% at the same time.\",\"PeriodicalId\":385538,\"journal\":{\"name\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOTS.2013.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS.2013.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

性能改进和能源效率是在数据中心服务器中提供Internet服务的两个重要目标。在本文中,我们提出并开发了一种自调优请求批处理机制来同时实现这两个相关的目标。批处理机制提高了前端Web服务器的缓存命中率,从而有机会提高应用程序的性能和服务器系统的能源效率。该批处理机制的核心是一种新颖实用的双层控制系统,可根据服务水平协议和工作负载特性自适应调整cpu的批处理间隔和频率状态。批处理控制采用自整定模糊模型预测控制方法,提高应用性能。电源控制可根据工作负载的波动动态调整具有DVFS的cpu的频率,以提高能效。两个控制回路之间的协调器实现了期望的性能和能源效率。我们在测试平台上实现了该机制,实验结果表明,新方法在系统吞吐量和平均响应时间方面显着提高了应用程序的性能。结果还表明,该方法可使服务器系统的能耗降低13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Tuning Batching with DVFS for Improving Performance and Energy Efficiency in Servers
Performance improvement and energy efficiency are two important goals in provisioning Internet services in data center servers. In this paper, we propose and develop a self-tuning request batching mechanism to simultaneously achieve the two correlated goals. The batching mechanism increases the cache hit rate at the front-tier Web server, which provides the opportunity to improve application's performance and energy efficiency of the server system. The core of the batching mechanism is a novel and practical two-layer control system that adaptively adjusts the batching interval and frequency states of CPUs according to the service level agreement and the workload characteristics. The batching control adopts a self-tuning fuzzy model predictive control approach for application performance improvement. The power control dynamically adjusts the frequency of CPUs with DVFS in response to workload fluctuations for energy efficiency. A coordinator between the two control loops achieves the desired performance and energy efficiency. We implement the mechanism in a test bed and experimental results demonstrate that the new approach significantly improves the application's performance in terms of the system throughput and average response time. The results also illustrate it can reduce the energy consumption of the server system by 13% at the same time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Modeling Low-Power Wireless Protocols Based on Synchronous Packet Transmissions Analysis of a Simple Approach to Modeling Performance for Streaming Data Applications On the Accuracy of Trace Replay Methods for File System Evaluation A Fix-and-Relax Model for Heterogeneous LTE-Based Networks Making JavaScript Better by Making It Even Slower
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1