利用PowerWorld模拟器对南非地磁感应电流进行初步模拟

A. Jakoet, D. Oyedokun, C. Gaunt, P. Cilliers
{"title":"利用PowerWorld模拟器对南非地磁感应电流进行初步模拟","authors":"A. Jakoet, D. Oyedokun, C. Gaunt, P. Cilliers","doi":"10.1109/POWERAFRICA.2016.7556607","DOIUrl":null,"url":null,"abstract":"Geomagnetically induced currents (GICs) have received increasing attention in scientific and engineering communities since 1989 due to their effects on electrical infrastructure. Geomagnetic disturbances (GMD), initiated by plasma ejections from the Sun, induce low frequency (<;1 Hz) quasi-dc voltages in transmission lines, causing GICs to flow through neutral-grounded star-wound (grounded-wye) transformer windings. Half-wave saturation of the core causes unbalanced currents, harmonics, localized heating and an increase in non-active power consumption, leading to tripping of protective relays and system instability. South African experience of power system disruption by GICs, even in its mid-latitude location, has been reported and initiated several studies. This research, using the PowerWorld Simulator software, extends previous studies to assess the GICs, voltage stability and reactive power requirements of a model network typical of power systems in South Africa, when subjected to the benchmark GMD event.","PeriodicalId":177444,"journal":{"name":"2016 IEEE PES PowerAfrica","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preliminary modeling of geomagnetically induced currents in South Africa using PowerWorld Simulator\",\"authors\":\"A. Jakoet, D. Oyedokun, C. Gaunt, P. Cilliers\",\"doi\":\"10.1109/POWERAFRICA.2016.7556607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geomagnetically induced currents (GICs) have received increasing attention in scientific and engineering communities since 1989 due to their effects on electrical infrastructure. Geomagnetic disturbances (GMD), initiated by plasma ejections from the Sun, induce low frequency (<;1 Hz) quasi-dc voltages in transmission lines, causing GICs to flow through neutral-grounded star-wound (grounded-wye) transformer windings. Half-wave saturation of the core causes unbalanced currents, harmonics, localized heating and an increase in non-active power consumption, leading to tripping of protective relays and system instability. South African experience of power system disruption by GICs, even in its mid-latitude location, has been reported and initiated several studies. This research, using the PowerWorld Simulator software, extends previous studies to assess the GICs, voltage stability and reactive power requirements of a model network typical of power systems in South Africa, when subjected to the benchmark GMD event.\",\"PeriodicalId\":177444,\"journal\":{\"name\":\"2016 IEEE PES PowerAfrica\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERAFRICA.2016.7556607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERAFRICA.2016.7556607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

地磁感应电流(gic)由于其对电力基础设施的影响,自1989年以来在科学和工程界受到越来越多的关注。地磁扰动(GMD)由太阳等离子体抛射引起,在传输线中诱发低频(< 1 Hz)准直流电压,导致gic流过中性接地的星绕(接地的)变压器绕组。铁芯的半波饱和会导致电流不平衡、谐波、局部发热和非有功功率消耗的增加,从而导致保护继电器跳闸和系统不稳定。据报道,南非电力系统甚至在其中纬度地区也受到全球气候变化的影响,并已开始进行几项研究。本研究使用PowerWorld模拟器软件,扩展了先前的研究,以评估南非典型电力系统模型网络在基准GMD事件下的GICs、电压稳定性和无功功率需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary modeling of geomagnetically induced currents in South Africa using PowerWorld Simulator
Geomagnetically induced currents (GICs) have received increasing attention in scientific and engineering communities since 1989 due to their effects on electrical infrastructure. Geomagnetic disturbances (GMD), initiated by plasma ejections from the Sun, induce low frequency (<;1 Hz) quasi-dc voltages in transmission lines, causing GICs to flow through neutral-grounded star-wound (grounded-wye) transformer windings. Half-wave saturation of the core causes unbalanced currents, harmonics, localized heating and an increase in non-active power consumption, leading to tripping of protective relays and system instability. South African experience of power system disruption by GICs, even in its mid-latitude location, has been reported and initiated several studies. This research, using the PowerWorld Simulator software, extends previous studies to assess the GICs, voltage stability and reactive power requirements of a model network typical of power systems in South Africa, when subjected to the benchmark GMD event.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical review of the Malawi community energy model Issues and applications of real-time data from off-grid electrical systems Multi objective dynamic economic emission dispatch with renewable energy and emissions Flexible distribution design in microgrids for dynamic power demand in low-income communities Secured access control architecture consideration for smart grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1