{"title":"四轮驱动与四轮独立转向电动汽车的高效控制分配方法","authors":"","doi":"10.23919/ACC53348.2022.9867549","DOIUrl":null,"url":null,"abstract":"In this paper, a computationally efficient two-path nonlinear optimal control allocation method is proposed to improve the yaw stability of four-wheel-independent-steering, four-wheel-drive vehicles. The virtual controller output is allocated using an optimization problem to compute each wheel's steering and traction commands at every controller time step. The optimization problem is solved by running a sequential quadratic programming (SQP) procedure, which may take some time to obtain satisfactory results. The proposed two-path control structure is derived from a more complex single-path allocation problem where torque allocation and steering correction optimal solutions are calculated concurrently. In this separated two-path control structure, computational load due to the complexity of the single block problem is reduced. In real applications, each problem can be run in parallel on different controllers of the vehicle controller network, which decreases the execution time with near-optimal results. The performance and speed comparisons of both approaches are studied using detailed vehicle simulations.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Computationally Efficient Control Allocation Method for Four-Wheel-Drive and Four-Wheel-Independent-Steering Electric Vehicles\",\"authors\":\"\",\"doi\":\"10.23919/ACC53348.2022.9867549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a computationally efficient two-path nonlinear optimal control allocation method is proposed to improve the yaw stability of four-wheel-independent-steering, four-wheel-drive vehicles. The virtual controller output is allocated using an optimization problem to compute each wheel's steering and traction commands at every controller time step. The optimization problem is solved by running a sequential quadratic programming (SQP) procedure, which may take some time to obtain satisfactory results. The proposed two-path control structure is derived from a more complex single-path allocation problem where torque allocation and steering correction optimal solutions are calculated concurrently. In this separated two-path control structure, computational load due to the complexity of the single block problem is reduced. In real applications, each problem can be run in parallel on different controllers of the vehicle controller network, which decreases the execution time with near-optimal results. The performance and speed comparisons of both approaches are studied using detailed vehicle simulations.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Computationally Efficient Control Allocation Method for Four-Wheel-Drive and Four-Wheel-Independent-Steering Electric Vehicles
In this paper, a computationally efficient two-path nonlinear optimal control allocation method is proposed to improve the yaw stability of four-wheel-independent-steering, four-wheel-drive vehicles. The virtual controller output is allocated using an optimization problem to compute each wheel's steering and traction commands at every controller time step. The optimization problem is solved by running a sequential quadratic programming (SQP) procedure, which may take some time to obtain satisfactory results. The proposed two-path control structure is derived from a more complex single-path allocation problem where torque allocation and steering correction optimal solutions are calculated concurrently. In this separated two-path control structure, computational load due to the complexity of the single block problem is reduced. In real applications, each problem can be run in parallel on different controllers of the vehicle controller network, which decreases the execution time with near-optimal results. The performance and speed comparisons of both approaches are studied using detailed vehicle simulations.