硬件实现的FAPEC无损数据压缩空间

A. G. Villafranca, S. Mignot, J. Portell, E. García–Berro
{"title":"硬件实现的FAPEC无损数据压缩空间","authors":"A. G. Villafranca, S. Mignot, J. Portell, E. García–Berro","doi":"10.1109/AHS.2010.5546264","DOIUrl":null,"url":null,"abstract":"The instruments used in modern space missions require increasing amounts of telemetry resources to download the acquired data to the ground. Data compression helps to mitigate this problem and, therefore, it is currently seen as a mandatory stage for most of the missions, although the available on-board processing power is often modest. In many cases, data compression must be performed without losses. FAPEC is a lossless data compression algorithm that typically offers better ratios than the CCSDS 121.0 recommendation on realistic data sets. Its compression efficiency is higher than 90% of the Shannon limit in most cases, even in presence of large amounts of noise and outliers. FAPEC has been successfully implemented in software and its low-complexity algorithm also seemed suitable for a hardware implementation. In this paper we describe a prototype FPGA implementation which has been developed targeting the antifuse radiation-hardened RTAX Actel family. We have assessed that FAPEC can be easily implemented in hardware without requiring an external memory. The prototype presents an initial throughput of 32 Mbit/s and a complexity of 120 Kgate, hence being a compact and a robust solution for generic lossless compression. Finally, we discuss potential improvements that could easily boost the performance beyond the barrier of 100 Mbit/s.","PeriodicalId":101655,"journal":{"name":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hardware implementation of the FAPEC lossless data compressor for space\",\"authors\":\"A. G. Villafranca, S. Mignot, J. Portell, E. García–Berro\",\"doi\":\"10.1109/AHS.2010.5546264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The instruments used in modern space missions require increasing amounts of telemetry resources to download the acquired data to the ground. Data compression helps to mitigate this problem and, therefore, it is currently seen as a mandatory stage for most of the missions, although the available on-board processing power is often modest. In many cases, data compression must be performed without losses. FAPEC is a lossless data compression algorithm that typically offers better ratios than the CCSDS 121.0 recommendation on realistic data sets. Its compression efficiency is higher than 90% of the Shannon limit in most cases, even in presence of large amounts of noise and outliers. FAPEC has been successfully implemented in software and its low-complexity algorithm also seemed suitable for a hardware implementation. In this paper we describe a prototype FPGA implementation which has been developed targeting the antifuse radiation-hardened RTAX Actel family. We have assessed that FAPEC can be easily implemented in hardware without requiring an external memory. The prototype presents an initial throughput of 32 Mbit/s and a complexity of 120 Kgate, hence being a compact and a robust solution for generic lossless compression. Finally, we discuss potential improvements that could easily boost the performance beyond the barrier of 100 Mbit/s.\",\"PeriodicalId\":101655,\"journal\":{\"name\":\"2010 NASA/ESA Conference on Adaptive Hardware and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 NASA/ESA Conference on Adaptive Hardware and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2010.5546264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2010.5546264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

现代空间任务中使用的仪器需要越来越多的遥测资源,以便将获得的数据下载到地面。数据压缩有助于缓解这一问题,因此,它目前被视为大多数任务的强制性阶段,尽管可用的机载处理能力往往不大。在许多情况下,必须在不丢失数据的情况下执行数据压缩。FAPEC是一种无损数据压缩算法,通常在实际数据集上提供比CCSDS 121.0建议更好的比率。在大多数情况下,即使存在大量噪声和异常值,其压缩效率也高于香农极限的90%。FAPEC已在软件上成功实现,其低复杂度算法似乎也适合硬件实现。在本文中,我们描述了一个针对抗熔断辐射硬化RTAX Actel系列开发的原型FPGA实现。我们已经评估了FAPEC可以很容易地在硬件中实现,而不需要外部存储器。该原型的初始吞吐量为32 Mbit/s,复杂度为120 Kgate,因此是通用无损压缩的紧凑和健壮的解决方案。最后,我们讨论了可能的改进,可以很容易地提高性能超过100 Mbit/s的障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware implementation of the FAPEC lossless data compressor for space
The instruments used in modern space missions require increasing amounts of telemetry resources to download the acquired data to the ground. Data compression helps to mitigate this problem and, therefore, it is currently seen as a mandatory stage for most of the missions, although the available on-board processing power is often modest. In many cases, data compression must be performed without losses. FAPEC is a lossless data compression algorithm that typically offers better ratios than the CCSDS 121.0 recommendation on realistic data sets. Its compression efficiency is higher than 90% of the Shannon limit in most cases, even in presence of large amounts of noise and outliers. FAPEC has been successfully implemented in software and its low-complexity algorithm also seemed suitable for a hardware implementation. In this paper we describe a prototype FPGA implementation which has been developed targeting the antifuse radiation-hardened RTAX Actel family. We have assessed that FAPEC can be easily implemented in hardware without requiring an external memory. The prototype presents an initial throughput of 32 Mbit/s and a complexity of 120 Kgate, hence being a compact and a robust solution for generic lossless compression. Finally, we discuss potential improvements that could easily boost the performance beyond the barrier of 100 Mbit/s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive and evolvable hardware security architectures Ultimate design security in self-reconfiguring non-volatile environments SDVMR – managing heterogeneity in space and time on multicore SoCs Automated synthesis of 8-output voltage distributor using incremental, evolution An adaptable low density parity check (LDPC) engine for space based communication systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1