基于实时经验模态分解的脑电信号增强方法

Alina Santillán-Guzmán, M. Fischer, U. Heute, G. Schmidt
{"title":"基于实时经验模态分解的脑电信号增强方法","authors":"Alina Santillán-Guzmán, M. Fischer, U. Heute, G. Schmidt","doi":"10.5281/ZENODO.43399","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) recordings are used for brain research. However, in most cases, the recordings not only contain brain waves, but also artifacts of physiological or technical origins. A recent approach used for signal enhancement is Empirical Mode Decomposition (EMD), an adaptive data-driven technique which decomposes non-stationary data into so-called Intrinsic Mode Functions (IMFs). Once the IMFs are obtained, they can be used for denoising and detrending purposes. This paper presents a real-time implementation of an EMD-based signal enhancement scheme. The proposed implementation is used for removing noise, for suppressing muscle artifacts, and for detrending EEG signals in an automatic manner and in real-time. The proposed algorithm is demonstrated by application to a simulated and a real EEG data set from an epilepsy patient. Moreover, by visual inspection and in a quantitative manner, it is shown that after the EMD in real-time, the EEG signals are enhanced.","PeriodicalId":400766,"journal":{"name":"21st European Signal Processing Conference (EUSIPCO 2013)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Real-time Empirical Mode Decomposition for EEG signal enhancement\",\"authors\":\"Alina Santillán-Guzmán, M. Fischer, U. Heute, G. Schmidt\",\"doi\":\"10.5281/ZENODO.43399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) recordings are used for brain research. However, in most cases, the recordings not only contain brain waves, but also artifacts of physiological or technical origins. A recent approach used for signal enhancement is Empirical Mode Decomposition (EMD), an adaptive data-driven technique which decomposes non-stationary data into so-called Intrinsic Mode Functions (IMFs). Once the IMFs are obtained, they can be used for denoising and detrending purposes. This paper presents a real-time implementation of an EMD-based signal enhancement scheme. The proposed implementation is used for removing noise, for suppressing muscle artifacts, and for detrending EEG signals in an automatic manner and in real-time. The proposed algorithm is demonstrated by application to a simulated and a real EEG data set from an epilepsy patient. Moreover, by visual inspection and in a quantitative manner, it is shown that after the EMD in real-time, the EEG signals are enhanced.\",\"PeriodicalId\":400766,\"journal\":{\"name\":\"21st European Signal Processing Conference (EUSIPCO 2013)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st European Signal Processing Conference (EUSIPCO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.43399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st European Signal Processing Conference (EUSIPCO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

脑电图(EEG)记录用于大脑研究。然而,在大多数情况下,录音不仅包含脑电波,还包含生理或技术来源的人工制品。最近用于信号增强的方法是经验模态分解(EMD),这是一种自适应数据驱动技术,将非平稳数据分解为所谓的内禀模态函数(imf)。一旦获得了imf,它们就可以用于去噪和去趋势。本文提出了一种基于emd的信号增强方案的实时实现。所提出的实现用于去除噪声,抑制肌肉伪影,以及以自动和实时的方式对EEG信号进行去趋势。通过对一个癫痫患者的模拟脑电图数据集和真实脑电图数据集的分析,验证了该算法的有效性。此外,通过目测和定量分析表明,实时EMD后的脑电信号得到了增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time Empirical Mode Decomposition for EEG signal enhancement
Electroencephalography (EEG) recordings are used for brain research. However, in most cases, the recordings not only contain brain waves, but also artifacts of physiological or technical origins. A recent approach used for signal enhancement is Empirical Mode Decomposition (EMD), an adaptive data-driven technique which decomposes non-stationary data into so-called Intrinsic Mode Functions (IMFs). Once the IMFs are obtained, they can be used for denoising and detrending purposes. This paper presents a real-time implementation of an EMD-based signal enhancement scheme. The proposed implementation is used for removing noise, for suppressing muscle artifacts, and for detrending EEG signals in an automatic manner and in real-time. The proposed algorithm is demonstrated by application to a simulated and a real EEG data set from an epilepsy patient. Moreover, by visual inspection and in a quantitative manner, it is shown that after the EMD in real-time, the EEG signals are enhanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iterative algorithms for unbiased FIR state estimation in discrete time Detection of clipping in coded speech signals Primary emitter localization using smartly initialized Metropolis-Hastings algorithm Online multi-speaker tracking using multiple microphone arrays informed by auditory scene analysis Fast diffraction-pattern matching for object detection and recognition in digital holograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1