{"title":"基于多卷积神经网络的多尺度特征提取框架","authors":"Kuan-Chuan Peng, Tsuhan Chen","doi":"10.1109/ICME.2015.7177449","DOIUrl":null,"url":null,"abstract":"Most works related to convolutional neural networks (CNN) use the traditional CNN framework which extracts features in only one scale. We propose multi-scale convolutional neural networks (MSCNN) which can not only extract multi-scale features but also solve the issues of the previous methods which use CNN to extract multi-scale features. With the assumption of label-inheritable (LI) property, we also propose a method to generate exponentially more training examples for MSCNN from the given training set. Our experimental results show that MSCNN outperforms both the state-of-the-art methods and the traditional CNN framework on artist, artistic style, and architectural style classification, supporting that MSCNN outperforms the traditional CNN framework on the tasks which at least partially satisfy LI property.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A framework of extracting multi-scale features using multiple convolutional neural networks\",\"authors\":\"Kuan-Chuan Peng, Tsuhan Chen\",\"doi\":\"10.1109/ICME.2015.7177449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most works related to convolutional neural networks (CNN) use the traditional CNN framework which extracts features in only one scale. We propose multi-scale convolutional neural networks (MSCNN) which can not only extract multi-scale features but also solve the issues of the previous methods which use CNN to extract multi-scale features. With the assumption of label-inheritable (LI) property, we also propose a method to generate exponentially more training examples for MSCNN from the given training set. Our experimental results show that MSCNN outperforms both the state-of-the-art methods and the traditional CNN framework on artist, artistic style, and architectural style classification, supporting that MSCNN outperforms the traditional CNN framework on the tasks which at least partially satisfy LI property.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A framework of extracting multi-scale features using multiple convolutional neural networks
Most works related to convolutional neural networks (CNN) use the traditional CNN framework which extracts features in only one scale. We propose multi-scale convolutional neural networks (MSCNN) which can not only extract multi-scale features but also solve the issues of the previous methods which use CNN to extract multi-scale features. With the assumption of label-inheritable (LI) property, we also propose a method to generate exponentially more training examples for MSCNN from the given training set. Our experimental results show that MSCNN outperforms both the state-of-the-art methods and the traditional CNN framework on artist, artistic style, and architectural style classification, supporting that MSCNN outperforms the traditional CNN framework on the tasks which at least partially satisfy LI property.