基于溯因解释的学习提高了解析的准确性和效率

O. Streiter
{"title":"基于溯因解释的学习提高了解析的准确性和效率","authors":"O. Streiter","doi":"10.3115/1119250.1119265","DOIUrl":null,"url":null,"abstract":"Natural language parsing has to be accurate and quick. Explanation-based Learning (EBL) is a technique to speed-up parsing. The accuracy however often declines with EBL. The paper shows that this accuracy loss is not due to the EBL framework as such, but to deductive parsing. Abductive EBL allows extending the deductive closure of the parser. We present a Chinese parser based on abduction. Experiments show improvements in accuracy and efficiency.1","PeriodicalId":403123,"journal":{"name":"Workshop on Chinese Language Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abductive Explanation-based Learning Improves Parsing Accuracy and Efficiency\",\"authors\":\"O. Streiter\",\"doi\":\"10.3115/1119250.1119265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural language parsing has to be accurate and quick. Explanation-based Learning (EBL) is a technique to speed-up parsing. The accuracy however often declines with EBL. The paper shows that this accuracy loss is not due to the EBL framework as such, but to deductive parsing. Abductive EBL allows extending the deductive closure of the parser. We present a Chinese parser based on abduction. Experiments show improvements in accuracy and efficiency.1\",\"PeriodicalId\":403123,\"journal\":{\"name\":\"Workshop on Chinese Language Processing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Chinese Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1119250.1119265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Chinese Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119250.1119265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然语言解析必须准确、快速。基于解释的学习(EBL)是一种加速解析的技术。然而,EBL的准确性经常下降。本文表明,这种准确性损失不是由于EBL框架本身,而是由于演绎解析。溯因EBL允许扩展解析器的演绎闭包。提出了一种基于溯因法的中文解析器。实验表明,该方法在精度和效率上均有提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abductive Explanation-based Learning Improves Parsing Accuracy and Efficiency
Natural language parsing has to be accurate and quick. Explanation-based Learning (EBL) is a technique to speed-up parsing. The accuracy however often declines with EBL. The paper shows that this accuracy loss is not due to the EBL framework as such, but to deductive parsing. Abductive EBL allows extending the deductive closure of the parser. We present a Chinese parser based on abduction. Experiments show improvements in accuracy and efficiency.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Large Chinese Corpus Annotated with Semantic Dependency A Two-stage Statistical Word Segmentation System for Chinese Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation Chinese Word Segmentation in MSR-NLP Annotating the Propositions in the Penn Chinese Treebank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1