广义伽玛分布的位置尺度混合:估计和病例影响诊断

Z. Rahnamaei
{"title":"广义伽玛分布的位置尺度混合:估计和病例影响诊断","authors":"Z. Rahnamaei","doi":"10.18869/acadpub.jsri.12.2.163","DOIUrl":null,"url":null,"abstract":"One of the most interesting problems in distribution theory is constructing the distributions, which are appropriate for fitting skewed and heavy-tailed data sets. In this paper, we introduce a skew-slash distribution by using the scale mixture of the generalized gamma distribution. Some properties of this distribution are obtained. An EM-type algorithm is presented to estimate the parameters. Finally, we provide a simulation study and an application to real data to illustrate the modeling strength of the proposed distribution.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Location-Scale Mixture of Generalized Gamma Distribution: Estimation and Case Influence Diagnostics\",\"authors\":\"Z. Rahnamaei\",\"doi\":\"10.18869/acadpub.jsri.12.2.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most interesting problems in distribution theory is constructing the distributions, which are appropriate for fitting skewed and heavy-tailed data sets. In this paper, we introduce a skew-slash distribution by using the scale mixture of the generalized gamma distribution. Some properties of this distribution are obtained. An EM-type algorithm is presented to estimate the parameters. Finally, we provide a simulation study and an application to real data to illustrate the modeling strength of the proposed distribution.\",\"PeriodicalId\":422124,\"journal\":{\"name\":\"Journal of Statistical Research of Iran\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Research of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18869/acadpub.jsri.12.2.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/acadpub.jsri.12.2.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布理论中最有趣的问题之一是构造适合于拟合偏态和重尾数据集的分布。本文利用广义伽玛分布的尺度混合引入了斜斜分布。得到了该分布的一些性质。提出了一种em型的参数估计算法。最后,我们提供了一个仿真研究和一个实际数据的应用来说明所提出的分布的建模强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Location-Scale Mixture of Generalized Gamma Distribution: Estimation and Case Influence Diagnostics
One of the most interesting problems in distribution theory is constructing the distributions, which are appropriate for fitting skewed and heavy-tailed data sets. In this paper, we introduce a skew-slash distribution by using the scale mixture of the generalized gamma distribution. Some properties of this distribution are obtained. An EM-type algorithm is presented to estimate the parameters. Finally, we provide a simulation study and an application to real data to illustrate the modeling strength of the proposed distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Goodness of Fit Tests based on Information Criterion for Randomly Censored Data Joint Modeling for Zero-Inflated Beta-Binomial and Normal Responses Best Linear Predictors in a Stationary Second Order Autoregressive process by means of near and far observations A Note on the Identifiability of General Bayesian Gaussian Models Simulated Synthetic Population Projection Using an Extended Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1