考虑初始瞬态响应和长期恢复的电网弹性优化投资

B. Pierre, Bryan Arguello, Manuel J. Garcia
{"title":"考虑初始瞬态响应和长期恢复的电网弹性优化投资","authors":"B. Pierre, Bryan Arguello, Manuel J. Garcia","doi":"10.1109/PMAPS47429.2020.9183506","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-time period two-stage stochastic mixed-integer linear optimization model which determines the optimal hardening investments to improve power system resilience to natural disaster threat scenarios. The input to the optimization model is a set of scenarios for specific natural disaster events, that is based on historical data. The objective of the optimization model is to minimize the expected weighted load shed from the initial impact and the restoration process over all scenarios. The optimization model considers the initial impact of the severe event by using electromechanical transient dynamic simulations. The initial impact weighted load shed is determined by the transient simulation, which allows for secondary transients from protection devices and cascading failures. The rest of the event, after the initial shock, is modeled in the optimization with a multi-time period dc optimal power flow (DCOPF) which is initialized with the solution from the dynamic simulation. The first stage of the optimization model determines the optimal investments. The second stage, given the investments, determines the optimal unit commitment, generator dispatch, and transmission line switching during the multi-time period restoration process to minimize the weighted load shed over all scenarios. Note, an investment will change the transient simulation result, and therefore change the initialization to the DCOPF restoration model. The investment optimization model encompasses both the initial impact (dynamic transient simulation results) and the restoration period (DCOPF) of the event, as components come back online. The model is tested on the IEEE RTS-96 system.","PeriodicalId":126918,"journal":{"name":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Investments to Improve Grid Resilience Considering Initial Transient Response and Long-term Restoration\",\"authors\":\"B. Pierre, Bryan Arguello, Manuel J. Garcia\",\"doi\":\"10.1109/PMAPS47429.2020.9183506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multi-time period two-stage stochastic mixed-integer linear optimization model which determines the optimal hardening investments to improve power system resilience to natural disaster threat scenarios. The input to the optimization model is a set of scenarios for specific natural disaster events, that is based on historical data. The objective of the optimization model is to minimize the expected weighted load shed from the initial impact and the restoration process over all scenarios. The optimization model considers the initial impact of the severe event by using electromechanical transient dynamic simulations. The initial impact weighted load shed is determined by the transient simulation, which allows for secondary transients from protection devices and cascading failures. The rest of the event, after the initial shock, is modeled in the optimization with a multi-time period dc optimal power flow (DCOPF) which is initialized with the solution from the dynamic simulation. The first stage of the optimization model determines the optimal investments. The second stage, given the investments, determines the optimal unit commitment, generator dispatch, and transmission line switching during the multi-time period restoration process to minimize the weighted load shed over all scenarios. Note, an investment will change the transient simulation result, and therefore change the initialization to the DCOPF restoration model. The investment optimization model encompasses both the initial impact (dynamic transient simulation results) and the restoration period (DCOPF) of the event, as components come back online. The model is tested on the IEEE RTS-96 system.\",\"PeriodicalId\":126918,\"journal\":{\"name\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMAPS47429.2020.9183506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS47429.2020.9183506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种多时段两阶段随机混合整数线性优化模型,确定了提高电力系统对自然灾害威胁情景恢复能力的最优加固投资。优化模型的输入是一组基于历史数据的特定自然灾害事件的场景。优化模型的目标是在所有情况下最小化初始影响和恢复过程的期望加权负荷。该优化模型通过机电瞬态动力学仿真,考虑了严重事件的初始影响。初始冲击加权负荷由瞬态模拟确定,该模拟允许保护装置和级联故障产生的二次瞬态。在初始冲击后,剩余的事件在优化中建模为多时段直流最优潮流(DCOPF),该潮流由动态仿真的解初始化。优化模型的第一阶段确定最优投资。第二阶段,在给定投资的情况下,确定多时间段恢复过程中的最佳机组投入、发电机调度和输电线路切换,以最大限度地减少所有情况下的加权负荷。注意,投资将改变瞬态模拟结果,从而改变DCOPF恢复模型的初始化。投资优化模型包括初始影响(动态瞬态模拟结果)和事件恢复周期(DCOPF),因为组件重新上线。该模型在IEEE RTS-96系统上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Investments to Improve Grid Resilience Considering Initial Transient Response and Long-term Restoration
This paper presents a multi-time period two-stage stochastic mixed-integer linear optimization model which determines the optimal hardening investments to improve power system resilience to natural disaster threat scenarios. The input to the optimization model is a set of scenarios for specific natural disaster events, that is based on historical data. The objective of the optimization model is to minimize the expected weighted load shed from the initial impact and the restoration process over all scenarios. The optimization model considers the initial impact of the severe event by using electromechanical transient dynamic simulations. The initial impact weighted load shed is determined by the transient simulation, which allows for secondary transients from protection devices and cascading failures. The rest of the event, after the initial shock, is modeled in the optimization with a multi-time period dc optimal power flow (DCOPF) which is initialized with the solution from the dynamic simulation. The first stage of the optimization model determines the optimal investments. The second stage, given the investments, determines the optimal unit commitment, generator dispatch, and transmission line switching during the multi-time period restoration process to minimize the weighted load shed over all scenarios. Note, an investment will change the transient simulation result, and therefore change the initialization to the DCOPF restoration model. The investment optimization model encompasses both the initial impact (dynamic transient simulation results) and the restoration period (DCOPF) of the event, as components come back online. The model is tested on the IEEE RTS-96 system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Operating Reserve Assessment in Systems with Energy Storage and Electric Vehicles Framework and methodology for active distribution grid planning in Norway Parallel GPU Implementation for Fast Generating System Adequacy Assessment via Sequential Monte Carlo Simulation Distribution System Planning Considering Power Quality, Loadability and Economic Aspects Modelling and Simulation of Uncertainty in the Placement of Distributed Energy Resources for Planning Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1