Ulises Castro Peñaloza, Jorge E. Ibarra Esquer, Brenda L. Flores Rios
{"title":"数字硬件设备中人工神经网络执行阶段的实现方法","authors":"Ulises Castro Peñaloza, Jorge E. Ibarra Esquer, Brenda L. Flores Rios","doi":"10.1109/CERMA.2008.54","DOIUrl":null,"url":null,"abstract":"In this paper we describe a methodology for implementing the phase of execution of artificial neural networks (ANN) in hardware devices. First, we show how the elements of a single neuron: multipliers, sum of products and transfer function are separated and constructed as VHDL entities. These entities are then interconnected to form a neuron that can be mapped to a hardware device. Using a similar approach, neurons are grouped in layers, which are then interconnected themselves to construct an artificial neural network. The methodology is intended to lead a neural network designer through the steps required to take the design into a hardware device, starting with the results provided by a neurosimulator, obtaining the network parameters and translating them into a fully synthesizable design. A prototype of a Java-based ANN descriptor to VHDL translator is presented. In addition, the desired characteristics of neurosimulators are discussed and a comparison among different hardware platforms is shown.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Methodology for Implementation of the Execution Phase of Artificial Neural Networks in Digital Hardware Devices\",\"authors\":\"Ulises Castro Peñaloza, Jorge E. Ibarra Esquer, Brenda L. Flores Rios\",\"doi\":\"10.1109/CERMA.2008.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a methodology for implementing the phase of execution of artificial neural networks (ANN) in hardware devices. First, we show how the elements of a single neuron: multipliers, sum of products and transfer function are separated and constructed as VHDL entities. These entities are then interconnected to form a neuron that can be mapped to a hardware device. Using a similar approach, neurons are grouped in layers, which are then interconnected themselves to construct an artificial neural network. The methodology is intended to lead a neural network designer through the steps required to take the design into a hardware device, starting with the results provided by a neurosimulator, obtaining the network parameters and translating them into a fully synthesizable design. A prototype of a Java-based ANN descriptor to VHDL translator is presented. In addition, the desired characteristics of neurosimulators are discussed and a comparison among different hardware platforms is shown.\",\"PeriodicalId\":126172,\"journal\":{\"name\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2008.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Methodology for Implementation of the Execution Phase of Artificial Neural Networks in Digital Hardware Devices
In this paper we describe a methodology for implementing the phase of execution of artificial neural networks (ANN) in hardware devices. First, we show how the elements of a single neuron: multipliers, sum of products and transfer function are separated and constructed as VHDL entities. These entities are then interconnected to form a neuron that can be mapped to a hardware device. Using a similar approach, neurons are grouped in layers, which are then interconnected themselves to construct an artificial neural network. The methodology is intended to lead a neural network designer through the steps required to take the design into a hardware device, starting with the results provided by a neurosimulator, obtaining the network parameters and translating them into a fully synthesizable design. A prototype of a Java-based ANN descriptor to VHDL translator is presented. In addition, the desired characteristics of neurosimulators are discussed and a comparison among different hardware platforms is shown.