基于信号时序逻辑的数据分类决策树方法

Giuseppe Bombara, C. Vasile, Francisco Penedo, Hirotoshi Yasuoka, C. Belta
{"title":"基于信号时序逻辑的数据分类决策树方法","authors":"Giuseppe Bombara, C. Vasile, Francisco Penedo, Hirotoshi Yasuoka, C. Belta","doi":"10.1145/2883817.2883843","DOIUrl":null,"url":null,"abstract":"This paper introduces a framework for inference of timed temporal logic properties from data. The dataset is given as a finite set of pairs of finite-time system traces and labels, where the labels indicate whether the traces exhibit some desired behavior (e.g., a ship traveling along a safe route). We propose a decision-tree based approach for learning signal temporal logic classifiers. The method produces binary decision trees that represent the inferred formulae. Each node of the tree contains a test associated with the satisfaction of a simple formula, optimally tuned from a predefined finite set of primitives. Optimality is assessed using heuristic impurity measures, which capture how well the current primitive splits the data with respect to the traces' labels. We propose extensions of the usual impurity measures from machine learning literature to handle classification of system traces by leveraging upon the robustness degree concept. The proposed incremental construction procedure greatly improves the execution time and the accuracy compared to existing algorithms. We present two case studies that illustrate the usefulness and the computational advantages of the algorithms. The first is an anomaly detection problem in a maritime environment. The second is a fault detection problem in an automotive powertrain system.","PeriodicalId":337926,"journal":{"name":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"A Decision Tree Approach to Data Classification using Signal Temporal Logic\",\"authors\":\"Giuseppe Bombara, C. Vasile, Francisco Penedo, Hirotoshi Yasuoka, C. Belta\",\"doi\":\"10.1145/2883817.2883843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a framework for inference of timed temporal logic properties from data. The dataset is given as a finite set of pairs of finite-time system traces and labels, where the labels indicate whether the traces exhibit some desired behavior (e.g., a ship traveling along a safe route). We propose a decision-tree based approach for learning signal temporal logic classifiers. The method produces binary decision trees that represent the inferred formulae. Each node of the tree contains a test associated with the satisfaction of a simple formula, optimally tuned from a predefined finite set of primitives. Optimality is assessed using heuristic impurity measures, which capture how well the current primitive splits the data with respect to the traces' labels. We propose extensions of the usual impurity measures from machine learning literature to handle classification of system traces by leveraging upon the robustness degree concept. The proposed incremental construction procedure greatly improves the execution time and the accuracy compared to existing algorithms. We present two case studies that illustrate the usefulness and the computational advantages of the algorithms. The first is an anomaly detection problem in a maritime environment. The second is a fault detection problem in an automotive powertrain system.\",\"PeriodicalId\":337926,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2883817.2883843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883817.2883843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

摘要

本文介绍了一种从数据中推断时序逻辑属性的框架。数据集是有限时间系统轨迹和标签对的有限集合,其中标签表示轨迹是否表现出某些期望的行为(例如,沿着安全路线行驶的船舶)。我们提出了一种基于决策树的方法来学习信号时间逻辑分类器。该方法产生表示推断公式的二叉决策树。树的每个节点都包含一个与简单公式的满足度相关的测试,该公式从预定义的有限原语集进行了优化。使用启发式杂质度量来评估最优性,它捕获当前原语相对于轨迹标签分割数据的程度。我们提出了机器学习文献中常用的杂质度量的扩展,通过利用鲁棒度概念来处理系统痕迹的分类。与现有算法相比,所提出的增量构造过程大大提高了执行时间和精度。我们提出了两个案例研究来说明这些算法的有用性和计算优势。首先是海洋环境中的异常检测问题。二是汽车动力总成系统的故障检测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Decision Tree Approach to Data Classification using Signal Temporal Logic
This paper introduces a framework for inference of timed temporal logic properties from data. The dataset is given as a finite set of pairs of finite-time system traces and labels, where the labels indicate whether the traces exhibit some desired behavior (e.g., a ship traveling along a safe route). We propose a decision-tree based approach for learning signal temporal logic classifiers. The method produces binary decision trees that represent the inferred formulae. Each node of the tree contains a test associated with the satisfaction of a simple formula, optimally tuned from a predefined finite set of primitives. Optimality is assessed using heuristic impurity measures, which capture how well the current primitive splits the data with respect to the traces' labels. We propose extensions of the usual impurity measures from machine learning literature to handle classification of system traces by leveraging upon the robustness degree concept. The proposed incremental construction procedure greatly improves the execution time and the accuracy compared to existing algorithms. We present two case studies that illustrate the usefulness and the computational advantages of the algorithms. The first is an anomaly detection problem in a maritime environment. The second is a fault detection problem in an automotive powertrain system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formal Analysis of Robustness at Model and Code Level Robust Asymptotic Stabilization of Hybrid Systems using Control Lyapunov Functions SCOTS: A Tool for the Synthesis of Symbolic Controllers Case Studies in Data-Driven Verification of Dynamical Systems Parallelotope Bundles for Polynomial Reachability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1