U. Tan, O. Rabaste, C. Adnet, F. Arlery, J. Ovarlez
{"title":"求解低自相关副瓣问题的优化方法","authors":"U. Tan, O. Rabaste, C. Adnet, F. Arlery, J. Ovarlez","doi":"10.1109/IRS.2016.7497323","DOIUrl":null,"url":null,"abstract":"In this paper, a discussion is made on the optimization methods that can solve the low autocorrelation sidelobes problem for polyphase sequences. This paper starts with a description and a comparison of two algorithms that are commonly used in the literature: a stochastic method and a deterministic one (a gradient descent). Then, an alternative method based on the Random Walk Metropolis-Hastings algorithm is proposed, that takes the gradient as a search direction. It provides better results than a steepest descent alone. Finally, this autocorrelation question is handled differently, considering a mismatched filter. We will see that a mismatched filter performs impressively well on optimized sequences.","PeriodicalId":346680,"journal":{"name":"2016 17th International Radar Symposium (IRS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization methods for solving the low autocorrelation sidelobes problem\",\"authors\":\"U. Tan, O. Rabaste, C. Adnet, F. Arlery, J. Ovarlez\",\"doi\":\"10.1109/IRS.2016.7497323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a discussion is made on the optimization methods that can solve the low autocorrelation sidelobes problem for polyphase sequences. This paper starts with a description and a comparison of two algorithms that are commonly used in the literature: a stochastic method and a deterministic one (a gradient descent). Then, an alternative method based on the Random Walk Metropolis-Hastings algorithm is proposed, that takes the gradient as a search direction. It provides better results than a steepest descent alone. Finally, this autocorrelation question is handled differently, considering a mismatched filter. We will see that a mismatched filter performs impressively well on optimized sequences.\",\"PeriodicalId\":346680,\"journal\":{\"name\":\"2016 17th International Radar Symposium (IRS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRS.2016.7497323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRS.2016.7497323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization methods for solving the low autocorrelation sidelobes problem
In this paper, a discussion is made on the optimization methods that can solve the low autocorrelation sidelobes problem for polyphase sequences. This paper starts with a description and a comparison of two algorithms that are commonly used in the literature: a stochastic method and a deterministic one (a gradient descent). Then, an alternative method based on the Random Walk Metropolis-Hastings algorithm is proposed, that takes the gradient as a search direction. It provides better results than a steepest descent alone. Finally, this autocorrelation question is handled differently, considering a mismatched filter. We will see that a mismatched filter performs impressively well on optimized sequences.