MATLAB环境下基于多核CPU和GPU的多层感知器训练加速

Shefa A. Dawwd, Noor M. AL Layla
{"title":"MATLAB环境下基于多核CPU和GPU的多层感知器训练加速","authors":"Shefa A. Dawwd, Noor M. AL Layla","doi":"10.33899/rengj.2015.101566","DOIUrl":null,"url":null,"abstract":"Shefa A. Dawwd / Assist. Prof. Noor M. AL Layla shefa.dawwd.2014@ieee.org aneng.noor@gmail.com Computer Engineering Department College of Engineering, University of Mosul, Mosul-Iraq Abstract Training of Artificial Neural Networks (ANNs) for large data sets is a time consuming mission. In this paper, accelerating the training of artificial neural network is achieved by a parallel training using either Multicore Central Processing Unit (CPU) or General Purpose Graphics Processing Unit (GPGPU). The training is implemented using five datasets with diverse amounts of patterns and with different neural network parameters in Multilayer Perceptron (MLP). The results show a significant increase in computation speed, which is increased nearly linear with the number of cores in multicore processor for problems with medium and large training datasets. Also, a considerable speed up is achieved when the GPU is used to train the MLP with the large training datasets. While a single core processor is a better choice when the data set size is small. The optimal number of cores or the type of the parallel platform should be employed according to the load of computation.","PeriodicalId":339890,"journal":{"name":"AL Rafdain Engineering Journal","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Training Acceleration of Multi-Layer Perceptron using Multicore CPU and GPU under MATLAB Environment\",\"authors\":\"Shefa A. Dawwd, Noor M. AL Layla\",\"doi\":\"10.33899/rengj.2015.101566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shefa A. Dawwd / Assist. Prof. Noor M. AL Layla shefa.dawwd.2014@ieee.org aneng.noor@gmail.com Computer Engineering Department College of Engineering, University of Mosul, Mosul-Iraq Abstract Training of Artificial Neural Networks (ANNs) for large data sets is a time consuming mission. In this paper, accelerating the training of artificial neural network is achieved by a parallel training using either Multicore Central Processing Unit (CPU) or General Purpose Graphics Processing Unit (GPGPU). The training is implemented using five datasets with diverse amounts of patterns and with different neural network parameters in Multilayer Perceptron (MLP). The results show a significant increase in computation speed, which is increased nearly linear with the number of cores in multicore processor for problems with medium and large training datasets. Also, a considerable speed up is achieved when the GPU is used to train the MLP with the large training datasets. While a single core processor is a better choice when the data set size is small. The optimal number of cores or the type of the parallel platform should be employed according to the load of computation.\",\"PeriodicalId\":339890,\"journal\":{\"name\":\"AL Rafdain Engineering Journal\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AL Rafdain Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33899/rengj.2015.101566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AL Rafdain Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/rengj.2015.101566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Shefa . Dawwd / Assist。Noor M. AL Layla教授shefa.dawwd.2014@ieee.org aneng.noor@gmail.com计算机工程系摩苏尔大学工程学院大型数据集人工神经网络(ann)的训练是一项耗时的任务。本文通过使用多核中央处理器(CPU)或通用图形处理器(GPGPU)进行并行训练来加快人工神经网络的训练速度。在多层感知器(Multilayer Perceptron, MLP)中,使用五个具有不同模式数量和不同神经网络参数的数据集来实现训练。结果表明,对于大中型训练数据集的问题,计算速度与多核处理器的核数呈近似线性增长。此外,当使用GPU使用大型训练数据集训练MLP时,可以实现相当大的速度提升。而单核处理器在数据集较小时是更好的选择。应根据计算负荷选择最优核数或并行平台类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training Acceleration of Multi-Layer Perceptron using Multicore CPU and GPU under MATLAB Environment
Shefa A. Dawwd / Assist. Prof. Noor M. AL Layla shefa.dawwd.2014@ieee.org aneng.noor@gmail.com Computer Engineering Department College of Engineering, University of Mosul, Mosul-Iraq Abstract Training of Artificial Neural Networks (ANNs) for large data sets is a time consuming mission. In this paper, accelerating the training of artificial neural network is achieved by a parallel training using either Multicore Central Processing Unit (CPU) or General Purpose Graphics Processing Unit (GPGPU). The training is implemented using five datasets with diverse amounts of patterns and with different neural network parameters in Multilayer Perceptron (MLP). The results show a significant increase in computation speed, which is increased nearly linear with the number of cores in multicore processor for problems with medium and large training datasets. Also, a considerable speed up is achieved when the GPU is used to train the MLP with the large training datasets. While a single core processor is a better choice when the data set size is small. The optimal number of cores or the type of the parallel platform should be employed according to the load of computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Situation Of Water Treatment Plant In Mosul City Manufacturing of Erosion Measuring Rig for Polymers and Their Composites with some Experimental Results Numerical Analysis of Effect of Nano-particles on Fluid Flow and Heat Transfer by Forced Convection in Channel with different traingle configuration Evaluating the Performance of the A2O System for Removing Nutrients from Municipality Wastewater Real-Time Voice Transmission over Wireless Sensor Network (VoWSN) based Automatic Speech Recognition (ASR) Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1