基于空间方向邻域保持嵌入的高炉煤气系统监测与调度指导

Hongqi Zhang, Linqing Wang, Jun Zhao, Wei Wang
{"title":"基于空间方向邻域保持嵌入的高炉煤气系统监测与调度指导","authors":"Hongqi Zhang, Linqing Wang, Jun Zhao, Wei Wang","doi":"10.1109/DDCLS.2017.8068117","DOIUrl":null,"url":null,"abstract":"Blast furnace gas (BFG) system of steel enterprise generally accompanies with multi-dimension and nonlinear features. It's a hard assignment for energy scheduling operators to make real-time scheduling decision when monitoring such system. In this study, a novel dimensionality reduction method named Space Direction Neighborhood Preserving Embedding (SDNPE) is proposed for the BFG system monitoring and scheduling units determination. To maintain the system dynamic characteristic in the low dimension space, such method constructs a neighborhood graph that searches for nearest neighbors with respect to both the neighbors in spatial scales and fluctuation tendency of the gas flow data. Then, for the BFG system monitoring and scheduling units determination, Hotelling's T2 chart and score chart are constructed upon the SDNPE model. Experiments with real-time data of an iron enterprise in China demonstrated the effectiveness of the proposed method.","PeriodicalId":419114,"journal":{"name":"2017 6th Data Driven Control and Learning Systems (DDCLS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space direction neighborhood preserving embedding-based monitoring and scheduling guidance for blast furnace gas system\",\"authors\":\"Hongqi Zhang, Linqing Wang, Jun Zhao, Wei Wang\",\"doi\":\"10.1109/DDCLS.2017.8068117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blast furnace gas (BFG) system of steel enterprise generally accompanies with multi-dimension and nonlinear features. It's a hard assignment for energy scheduling operators to make real-time scheduling decision when monitoring such system. In this study, a novel dimensionality reduction method named Space Direction Neighborhood Preserving Embedding (SDNPE) is proposed for the BFG system monitoring and scheduling units determination. To maintain the system dynamic characteristic in the low dimension space, such method constructs a neighborhood graph that searches for nearest neighbors with respect to both the neighbors in spatial scales and fluctuation tendency of the gas flow data. Then, for the BFG system monitoring and scheduling units determination, Hotelling's T2 chart and score chart are constructed upon the SDNPE model. Experiments with real-time data of an iron enterprise in China demonstrated the effectiveness of the proposed method.\",\"PeriodicalId\":419114,\"journal\":{\"name\":\"2017 6th Data Driven Control and Learning Systems (DDCLS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th Data Driven Control and Learning Systems (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2017.8068117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th Data Driven Control and Learning Systems (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2017.8068117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钢铁企业高炉煤气系统普遍具有多维、非线性的特点。在对该系统进行监控时,如何做出实时的调度决策是能源调度操作者面临的难题。本文提出了一种新的降维方法——空间方向邻域保持嵌入(SDNPE),用于BFG系统的监控和调度单元的确定。为了在低维空间中保持系统的动态特性,该方法构建了一个邻域图,既考虑空间尺度上的邻域,又考虑气体流动数据的波动趋势,寻找最近邻。然后,对于BFG系统的监控和调度单元的确定,在SDNPE模型上构建Hotelling的T2图和计分图。以国内某钢铁企业的实时数据为例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Space direction neighborhood preserving embedding-based monitoring and scheduling guidance for blast furnace gas system
Blast furnace gas (BFG) system of steel enterprise generally accompanies with multi-dimension and nonlinear features. It's a hard assignment for energy scheduling operators to make real-time scheduling decision when monitoring such system. In this study, a novel dimensionality reduction method named Space Direction Neighborhood Preserving Embedding (SDNPE) is proposed for the BFG system monitoring and scheduling units determination. To maintain the system dynamic characteristic in the low dimension space, such method constructs a neighborhood graph that searches for nearest neighbors with respect to both the neighbors in spatial scales and fluctuation tendency of the gas flow data. Then, for the BFG system monitoring and scheduling units determination, Hotelling's T2 chart and score chart are constructed upon the SDNPE model. Experiments with real-time data of an iron enterprise in China demonstrated the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-free adaptive MIMO control algorithm application in polishing robot Multiple-fault diagnosis of analog circuit with fault tolerance Iterative learning control for switched singular systems Active disturbance rejection generalized predictive control and its application on large time-delay systems Robust ADRC for nonlinear time-varying system with uncertainties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1