基于天气模式的叠加长短期记忆与主成分分析的太阳辐照度短期预测

Justin D. de Guia, Ronnie S. Concepcion, Hilario A. Calinao, Jonnel D. Alejandrino, E. Dadios, E. Sybingco
{"title":"基于天气模式的叠加长短期记忆与主成分分析的太阳辐照度短期预测","authors":"Justin D. de Guia, Ronnie S. Concepcion, Hilario A. Calinao, Jonnel D. Alejandrino, E. Dadios, E. Sybingco","doi":"10.1109/TENCON50793.2020.9293719","DOIUrl":null,"url":null,"abstract":"Energy production of photovoltaic (PV) system is heavily influenced by solar irradiance. Accurate prediction of solar irradiance leads to optimal dispatching of available energy resources and anticipating end-user demand. However, it is difficult to do due to fluctuating nature of weather patterns. In the study, neural network models were defined to predict solar irradiance values based on weather patterns. Models included in the study are artificial neural network, convolutional neural network, bidirectional long-short term memory (LSTM) and stacked LSTM. Preprocessing methods such as data normalization and principal component analysis were applied before model training. Regression metrics such as mean squared error (MSE), maximum residual error (max error), mean absolute error (MAE), explained variance score (EVS), and regression score function (R2 score), were used to evaluate the performance of model prediction. Plots such as prediction curves, learning curves, and histogram of error distribution were also considered as well for further analysis of model performance. All models showed that it is capable of learning unforeseen values, however, stacked LSTM has the best results with the max error, R2, MAE, MSE, and EVS values of 651.536, 0.953, 41.738, 5124.686, and 0.946, respectively.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Using Stacked Long Short Term Memory with Principal Component Analysis for Short Term Prediction of Solar Irradiance based on Weather Patterns\",\"authors\":\"Justin D. de Guia, Ronnie S. Concepcion, Hilario A. Calinao, Jonnel D. Alejandrino, E. Dadios, E. Sybingco\",\"doi\":\"10.1109/TENCON50793.2020.9293719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy production of photovoltaic (PV) system is heavily influenced by solar irradiance. Accurate prediction of solar irradiance leads to optimal dispatching of available energy resources and anticipating end-user demand. However, it is difficult to do due to fluctuating nature of weather patterns. In the study, neural network models were defined to predict solar irradiance values based on weather patterns. Models included in the study are artificial neural network, convolutional neural network, bidirectional long-short term memory (LSTM) and stacked LSTM. Preprocessing methods such as data normalization and principal component analysis were applied before model training. Regression metrics such as mean squared error (MSE), maximum residual error (max error), mean absolute error (MAE), explained variance score (EVS), and regression score function (R2 score), were used to evaluate the performance of model prediction. Plots such as prediction curves, learning curves, and histogram of error distribution were also considered as well for further analysis of model performance. All models showed that it is capable of learning unforeseen values, however, stacked LSTM has the best results with the max error, R2, MAE, MSE, and EVS values of 651.536, 0.953, 41.738, 5124.686, and 0.946, respectively.\",\"PeriodicalId\":283131,\"journal\":{\"name\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON50793.2020.9293719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

太阳辐照度对光伏发电系统的发电量影响很大。对太阳辐照度的准确预测有助于优化可用能源的调度和预测终端用户的需求。然而,由于天气模式的波动性,这很难做到。在这项研究中,定义了神经网络模型来根据天气模式预测太阳辐照度值。研究的模型包括人工神经网络、卷积神经网络、双向长短期记忆(LSTM)和堆叠LSTM。模型训练前采用数据归一化、主成分分析等预处理方法。采用均方误差(MSE)、最大残差(max error)、平均绝对误差(MAE)、解释方差评分(EVS)、回归评分函数(R2评分)等回归指标评价模型预测效果。为了进一步分析模型性能,还考虑了预测曲线、学习曲线和误差分布直方图等图。所有模型都表明,它能够学习不可预见的值,其中堆叠LSTM的学习效果最好,最大误差、R2、MAE、MSE和EVS分别为651.536、0.953、41.738、5124.686和0.946。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Stacked Long Short Term Memory with Principal Component Analysis for Short Term Prediction of Solar Irradiance based on Weather Patterns
Energy production of photovoltaic (PV) system is heavily influenced by solar irradiance. Accurate prediction of solar irradiance leads to optimal dispatching of available energy resources and anticipating end-user demand. However, it is difficult to do due to fluctuating nature of weather patterns. In the study, neural network models were defined to predict solar irradiance values based on weather patterns. Models included in the study are artificial neural network, convolutional neural network, bidirectional long-short term memory (LSTM) and stacked LSTM. Preprocessing methods such as data normalization and principal component analysis were applied before model training. Regression metrics such as mean squared error (MSE), maximum residual error (max error), mean absolute error (MAE), explained variance score (EVS), and regression score function (R2 score), were used to evaluate the performance of model prediction. Plots such as prediction curves, learning curves, and histogram of error distribution were also considered as well for further analysis of model performance. All models showed that it is capable of learning unforeseen values, however, stacked LSTM has the best results with the max error, R2, MAE, MSE, and EVS values of 651.536, 0.953, 41.738, 5124.686, and 0.946, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Intrusive Diabetes Pre-diagnosis using Fingerprint Analysis with Multilayer Perceptron Smart Defect Detection and Sortation through Image Processing for Corn Short-term Unit Commitment Using Advanced Direct Load Control Leukemia Detection Mechanism through Microscopic Image and ML Techniques German Sign Language Translation using 3D Hand Pose Estimation and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1