Heng Zhao, Hong Hong, Yusheng Li, L. Sun, Xiaohua Zhu
{"title":"基于同步压缩变换的低功耗数字中频非接触瞬态生命体征检测","authors":"Heng Zhao, Hong Hong, Yusheng Li, L. Sun, Xiaohua Zhu","doi":"10.1109/BIOWIRELESS.2016.7445571","DOIUrl":null,"url":null,"abstract":"Aiming at detecting the instantaneous vital sign frequencies, which are very important to the clinical diagnosis and treatment, a novel method based on synchrosqueezing transform (SST) is applied to the low-power digital-IF non-contact vital sign detection system. The proposed technique reallocates the coefficients resulting from a wavelet transform to get a concentrated picture over the time-frequency plane, from which the instantaneous frequencies can be extracted. Through experiment and direct comparison with contact sensors, the instantaneous respiratory and heartbeat frequencies can be accurately obtained by the proposed method.","PeriodicalId":154090,"journal":{"name":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-power digital-IF noncontact instantaneous vital sign detection based on synchrosqueezing transform\",\"authors\":\"Heng Zhao, Hong Hong, Yusheng Li, L. Sun, Xiaohua Zhu\",\"doi\":\"10.1109/BIOWIRELESS.2016.7445571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at detecting the instantaneous vital sign frequencies, which are very important to the clinical diagnosis and treatment, a novel method based on synchrosqueezing transform (SST) is applied to the low-power digital-IF non-contact vital sign detection system. The proposed technique reallocates the coefficients resulting from a wavelet transform to get a concentrated picture over the time-frequency plane, from which the instantaneous frequencies can be extracted. Through experiment and direct comparison with contact sensors, the instantaneous respiratory and heartbeat frequencies can be accurately obtained by the proposed method.\",\"PeriodicalId\":154090,\"journal\":{\"name\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOWIRELESS.2016.7445571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOWIRELESS.2016.7445571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-power digital-IF noncontact instantaneous vital sign detection based on synchrosqueezing transform
Aiming at detecting the instantaneous vital sign frequencies, which are very important to the clinical diagnosis and treatment, a novel method based on synchrosqueezing transform (SST) is applied to the low-power digital-IF non-contact vital sign detection system. The proposed technique reallocates the coefficients resulting from a wavelet transform to get a concentrated picture over the time-frequency plane, from which the instantaneous frequencies can be extracted. Through experiment and direct comparison with contact sensors, the instantaneous respiratory and heartbeat frequencies can be accurately obtained by the proposed method.