PubMed摘要中细菌与生物群落关系的鉴定

Cyril Grouin
{"title":"PubMed摘要中细菌与生物群落关系的鉴定","authors":"Cyril Grouin","doi":"10.18653/v1/W16-3008","DOIUrl":null,"url":null,"abstract":"This paper presents our participation in the Bacteria/Biotope track from the 2016 BioNLP Shared-Task. Our methods rely on a combination of distinct machinelearning and rule-based systems. We used CRF and post-processing rules to identify mentions of bacteria and biotopes, a rulebased approach to normalize the concepts in the ontology and the taxonomy, and SVM to identify relations between bacteria and biotopes. On the test datasets, we achieved similar results to those obtained on the development datasets: on the categorization task, precision of 0.503 (gold standard entities) and SER of 0.827 (both NER and categorization); on the event relation task, F-measure of 0.485 (gold standard entities, ranking third out of 11) and of 0.192 (both NER and event relation, ranking first); on the knowledgebased task, mean references of 0.771 (gold standard entities) and of 0.202 (both NER, categorization and event relation).","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Identification of Mentions and Relations between Bacteria and Biotope from PubMed Abstracts\",\"authors\":\"Cyril Grouin\",\"doi\":\"10.18653/v1/W16-3008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents our participation in the Bacteria/Biotope track from the 2016 BioNLP Shared-Task. Our methods rely on a combination of distinct machinelearning and rule-based systems. We used CRF and post-processing rules to identify mentions of bacteria and biotopes, a rulebased approach to normalize the concepts in the ontology and the taxonomy, and SVM to identify relations between bacteria and biotopes. On the test datasets, we achieved similar results to those obtained on the development datasets: on the categorization task, precision of 0.503 (gold standard entities) and SER of 0.827 (both NER and categorization); on the event relation task, F-measure of 0.485 (gold standard entities, ranking third out of 11) and of 0.192 (both NER and event relation, ranking first); on the knowledgebased task, mean references of 0.771 (gold standard entities) and of 0.202 (both NER, categorization and event relation).\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W16-3008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-3008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文介绍了我们在2016年BioNLP共享任务中参与的细菌/生物圈轨道。我们的方法依赖于不同的机器学习和基于规则的系统的组合。我们使用CRF和后处理规则来识别提到的细菌和生物群落,一种基于规则的方法来规范化本体和分类法中的概念,以及SVM来识别细菌和生物群落之间的关系。在测试数据集上,我们获得了与开发数据集相似的结果:在分类任务上,精度为0.503(金标准实体),SER为0.827 (NER和分类);在事件关系任务上,F-measure为0.485(金标准主体,在11个主体中排名第三),F-measure为0.192 (NER和事件关系都是,排名第一);在基于知识的任务中,平均引用量为0.771(金标准实体),平均引用量为0.202 (NER、分类和事件关系)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Mentions and Relations between Bacteria and Biotope from PubMed Abstracts
This paper presents our participation in the Bacteria/Biotope track from the 2016 BioNLP Shared-Task. Our methods rely on a combination of distinct machinelearning and rule-based systems. We used CRF and post-processing rules to identify mentions of bacteria and biotopes, a rulebased approach to normalize the concepts in the ontology and the taxonomy, and SVM to identify relations between bacteria and biotopes. On the test datasets, we achieved similar results to those obtained on the development datasets: on the categorization task, precision of 0.503 (gold standard entities) and SER of 0.827 (both NER and categorization); on the event relation task, F-measure of 0.485 (gold standard entities, ranking third out of 11) and of 0.192 (both NER and event relation, ranking first); on the knowledgebased task, mean references of 0.771 (gold standard entities) and of 0.202 (both NER, categorization and event relation).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BIOptimus: Pre-training an Optimal Biomedical Language Model with Curriculum Learning for Named Entity Recognition Multi-Source (Pre-)Training for Cross-Domain Measurement, Unit and Context Extraction Building a Corpus for Biomedical Relation Extraction of Species Mentions Good Data, Large Data, or No Data? Comparing Three Approaches in Developing Research Aspect Classifiers for Biomedical Papers Evaluation of ChatGPT on Biomedical Tasks: A Zero-Shot Comparison with Fine-Tuned Generative Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1