一种混合张量分解-奇异谱分析方法用于基于erp的儿童自闭症评估

Beatriz Sanabria-Barradas, S. Sanei, D. Granados-Ramos
{"title":"一种混合张量分解-奇异谱分析方法用于基于erp的儿童自闭症评估","authors":"Beatriz Sanabria-Barradas, S. Sanei, D. Granados-Ramos","doi":"10.23919/eusipco55093.2022.9909603","DOIUrl":null,"url":null,"abstract":"Diagnosis of autism spectrum disorder (ASD) in children is often achieved by estimating the amplitudes and latencies of visual event-related potentials (ERPs). This requires accurate detection of desired ERPs, in our case P1 and N170, which are sensitive to visual stimuli. We aim to develop a hybrid of tensor factorization (TF) and singular spectrum analysis (SSA) to detect these components from electroencephalograms (EEGs) and restore the inherent noise and artifacts. The application of single-channel SSA to the detected sources by TF results in the removal of brain beta activity considerably enhancing the accuracy. The ERP parameters (amplitudes and latencies) are automatically estimated and applied to a decision-tree classifier leading to 100% accuracy.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Tensor Factorization - Singular Spectrum Analysis Approach for ERP-based Assessment of Autism in Children\",\"authors\":\"Beatriz Sanabria-Barradas, S. Sanei, D. Granados-Ramos\",\"doi\":\"10.23919/eusipco55093.2022.9909603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosis of autism spectrum disorder (ASD) in children is often achieved by estimating the amplitudes and latencies of visual event-related potentials (ERPs). This requires accurate detection of desired ERPs, in our case P1 and N170, which are sensitive to visual stimuli. We aim to develop a hybrid of tensor factorization (TF) and singular spectrum analysis (SSA) to detect these components from electroencephalograms (EEGs) and restore the inherent noise and artifacts. The application of single-channel SSA to the detected sources by TF results in the removal of brain beta activity considerably enhancing the accuracy. The ERP parameters (amplitudes and latencies) are automatically estimated and applied to a decision-tree classifier leading to 100% accuracy.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

儿童自闭症谱系障碍(ASD)的诊断通常是通过估计视觉事件相关电位(ERPs)的振幅和潜伏期来实现的。这需要准确检测所需的erp,在我们的案例中是P1和N170,它们对视觉刺激敏感。我们的目标是开发一种张量分解(TF)和奇异谱分析(SSA)的混合方法,从脑电图(eeg)中检测这些成分,并恢复固有的噪声和伪影。通过TF将单通道SSA应用于检测源,可以去除脑β活动,大大提高了准确性。ERP参数(振幅和延迟)被自动估计并应用于决策树分类器,导致100%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Tensor Factorization - Singular Spectrum Analysis Approach for ERP-based Assessment of Autism in Children
Diagnosis of autism spectrum disorder (ASD) in children is often achieved by estimating the amplitudes and latencies of visual event-related potentials (ERPs). This requires accurate detection of desired ERPs, in our case P1 and N170, which are sensitive to visual stimuli. We aim to develop a hybrid of tensor factorization (TF) and singular spectrum analysis (SSA) to detect these components from electroencephalograms (EEGs) and restore the inherent noise and artifacts. The application of single-channel SSA to the detected sources by TF results in the removal of brain beta activity considerably enhancing the accuracy. The ERP parameters (amplitudes and latencies) are automatically estimated and applied to a decision-tree classifier leading to 100% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1