{"title":"基于不同优化技术的合成孔径雷达旁瓣抑制","authors":"M. Youssef, Hala M. Abd El Qader, Khaled Ahmed","doi":"10.21608/mjeer.2018.63182","DOIUrl":null,"url":null,"abstract":"The synthetic aperture radar (SAR) can be used on either anaircraft or a LEO satellite for high resolution imaging on the earth’s surface. The transmitted pulse is to be shaped and modulated before transmission. A matched filter is used to construct a compressed time domain echo pulsed signal in the receiver. The main lobe level represents the desired target in the received echo compressed pulse to be detected. The sidelobe levels represent a false alarm (undesirable detection). This paper presents different optimization algorithms to reduce the sidelobe levels. These optimization algorithms are particle swarm optimization (PSO) algorithm, pattern search (PS) algorithm and Multi-Objective Genetic Algorithm (MOGA). The algorithms will be applied on different higher orders of polynomial instantaneous frequency modulation signals. A comparison study for these different optimization algorithms for reduction the sidelode levels is presented.","PeriodicalId":218019,"journal":{"name":"Menoufia Journal of Electronic Engineering Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Aperture Radar Sidelobe Reduction Using Different Optimization Techniques\",\"authors\":\"M. Youssef, Hala M. Abd El Qader, Khaled Ahmed\",\"doi\":\"10.21608/mjeer.2018.63182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthetic aperture radar (SAR) can be used on either anaircraft or a LEO satellite for high resolution imaging on the earth’s surface. The transmitted pulse is to be shaped and modulated before transmission. A matched filter is used to construct a compressed time domain echo pulsed signal in the receiver. The main lobe level represents the desired target in the received echo compressed pulse to be detected. The sidelobe levels represent a false alarm (undesirable detection). This paper presents different optimization algorithms to reduce the sidelobe levels. These optimization algorithms are particle swarm optimization (PSO) algorithm, pattern search (PS) algorithm and Multi-Objective Genetic Algorithm (MOGA). The algorithms will be applied on different higher orders of polynomial instantaneous frequency modulation signals. A comparison study for these different optimization algorithms for reduction the sidelode levels is presented.\",\"PeriodicalId\":218019,\"journal\":{\"name\":\"Menoufia Journal of Electronic Engineering Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Menoufia Journal of Electronic Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/mjeer.2018.63182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menoufia Journal of Electronic Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjeer.2018.63182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthetic Aperture Radar Sidelobe Reduction Using Different Optimization Techniques
The synthetic aperture radar (SAR) can be used on either anaircraft or a LEO satellite for high resolution imaging on the earth’s surface. The transmitted pulse is to be shaped and modulated before transmission. A matched filter is used to construct a compressed time domain echo pulsed signal in the receiver. The main lobe level represents the desired target in the received echo compressed pulse to be detected. The sidelobe levels represent a false alarm (undesirable detection). This paper presents different optimization algorithms to reduce the sidelobe levels. These optimization algorithms are particle swarm optimization (PSO) algorithm, pattern search (PS) algorithm and Multi-Objective Genetic Algorithm (MOGA). The algorithms will be applied on different higher orders of polynomial instantaneous frequency modulation signals. A comparison study for these different optimization algorithms for reduction the sidelode levels is presented.