{"title":"机会移动网络中的协同数据卸载","authors":"Zongqing Lu, Xiao Sun, T. L. Porta","doi":"10.1109/INFOCOM.2016.7524494","DOIUrl":null,"url":null,"abstract":"Opportunistic mobile networks consisting of intermittently connected mobile devices have been exploited for various applications, such as computational offloading and mitigating cellular traffic load. Different from existing work, in this paper, we focus on cooperatively offloading data among mobile devices to maximally improve the probability of data delivery from a mobile device to an intermittently connected remote server or data center within a given time constraint, which is referred to as the cooperative offloading problem. Unfortunately, cooperative offloading is NP-hard. To this end, a heuristic algorithm is designed based on the proposed probabilistic framework, which provides the estimation of the probability of successful data delivery over the opportunistic path, considering both data size and contact duration. Due to the lack of global information, a distributed algorithm is further proposed. The performance of the proposed approaches is evaluated based on both synthetic networks and real traces, and simulation results show that cooperative offloading can significantly improve the data delivery probability and the performance of both heuristic algorithm and distributed algorithm outperforms other approaches.","PeriodicalId":274591,"journal":{"name":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Cooperative data offloading in opportunistic mobile networks\",\"authors\":\"Zongqing Lu, Xiao Sun, T. L. Porta\",\"doi\":\"10.1109/INFOCOM.2016.7524494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opportunistic mobile networks consisting of intermittently connected mobile devices have been exploited for various applications, such as computational offloading and mitigating cellular traffic load. Different from existing work, in this paper, we focus on cooperatively offloading data among mobile devices to maximally improve the probability of data delivery from a mobile device to an intermittently connected remote server or data center within a given time constraint, which is referred to as the cooperative offloading problem. Unfortunately, cooperative offloading is NP-hard. To this end, a heuristic algorithm is designed based on the proposed probabilistic framework, which provides the estimation of the probability of successful data delivery over the opportunistic path, considering both data size and contact duration. Due to the lack of global information, a distributed algorithm is further proposed. The performance of the proposed approaches is evaluated based on both synthetic networks and real traces, and simulation results show that cooperative offloading can significantly improve the data delivery probability and the performance of both heuristic algorithm and distributed algorithm outperforms other approaches.\",\"PeriodicalId\":274591,\"journal\":{\"name\":\"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2016.7524494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2016.7524494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooperative data offloading in opportunistic mobile networks
Opportunistic mobile networks consisting of intermittently connected mobile devices have been exploited for various applications, such as computational offloading and mitigating cellular traffic load. Different from existing work, in this paper, we focus on cooperatively offloading data among mobile devices to maximally improve the probability of data delivery from a mobile device to an intermittently connected remote server or data center within a given time constraint, which is referred to as the cooperative offloading problem. Unfortunately, cooperative offloading is NP-hard. To this end, a heuristic algorithm is designed based on the proposed probabilistic framework, which provides the estimation of the probability of successful data delivery over the opportunistic path, considering both data size and contact duration. Due to the lack of global information, a distributed algorithm is further proposed. The performance of the proposed approaches is evaluated based on both synthetic networks and real traces, and simulation results show that cooperative offloading can significantly improve the data delivery probability and the performance of both heuristic algorithm and distributed algorithm outperforms other approaches.