{"title":"利用液相色谱法和柱后荧光检测法对某些谷物、油籽和豆类中的草甘膦及其主要代谢物进行残留分析。","authors":"Y Y Wigfield, M Lanouette","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A postcolumn liquid chromatographic method to determine the extractable residues of glyphosate (GLYPH) and its principal metabolite, (aminomethyl)phosphonic acid (AMPA), in various cereals and beans is described. The finely ground sample is extracted with a mixture of chloroform and water, and the resulting aqueous layer is passed through a cation exchange column. The eluate is adjusted to pH 7-10 and passed through an anion exchange column. The second column is eluted with 0.3M HCl solution and the resulting acidic eluate is analyzed with liquid chromatography coupled with postcolumn fluorescence detection. The mean recoveries for GLYPH in barley, canola, dry pea, flax, soybean, wheat, and white bean ranged from 90.0 to 98.1%, with coefficients of variation (CV) from 2.9 to 10.0% and limits of detection (LOD) from 0.07 to 0.14 ppm. Similarly, mean recoveries for AMPA in the same crops ranged from 87.4 to 98.9%, with CV from 4.6 to 7.7 and LOD from 0.05 to 0.12 ppm. Using this method, an analyst can routinely analyze 6 samples per 1.5 days. The advantages of this procedure are discussed.</p>","PeriodicalId":14752,"journal":{"name":"Journal - Association of Official Analytical Chemists","volume":"74 5","pages":"842-7"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residue analysis of glyphosate and its principal metabolite in certain cereals, oilseeds, and pulses by liquid chromatography and postcolumn fluorescence detection.\",\"authors\":\"Y Y Wigfield, M Lanouette\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A postcolumn liquid chromatographic method to determine the extractable residues of glyphosate (GLYPH) and its principal metabolite, (aminomethyl)phosphonic acid (AMPA), in various cereals and beans is described. The finely ground sample is extracted with a mixture of chloroform and water, and the resulting aqueous layer is passed through a cation exchange column. The eluate is adjusted to pH 7-10 and passed through an anion exchange column. The second column is eluted with 0.3M HCl solution and the resulting acidic eluate is analyzed with liquid chromatography coupled with postcolumn fluorescence detection. The mean recoveries for GLYPH in barley, canola, dry pea, flax, soybean, wheat, and white bean ranged from 90.0 to 98.1%, with coefficients of variation (CV) from 2.9 to 10.0% and limits of detection (LOD) from 0.07 to 0.14 ppm. Similarly, mean recoveries for AMPA in the same crops ranged from 87.4 to 98.9%, with CV from 4.6 to 7.7 and LOD from 0.05 to 0.12 ppm. Using this method, an analyst can routinely analyze 6 samples per 1.5 days. The advantages of this procedure are discussed.</p>\",\"PeriodicalId\":14752,\"journal\":{\"name\":\"Journal - Association of Official Analytical Chemists\",\"volume\":\"74 5\",\"pages\":\"842-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal - Association of Official Analytical Chemists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal - Association of Official Analytical Chemists","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Residue analysis of glyphosate and its principal metabolite in certain cereals, oilseeds, and pulses by liquid chromatography and postcolumn fluorescence detection.
A postcolumn liquid chromatographic method to determine the extractable residues of glyphosate (GLYPH) and its principal metabolite, (aminomethyl)phosphonic acid (AMPA), in various cereals and beans is described. The finely ground sample is extracted with a mixture of chloroform and water, and the resulting aqueous layer is passed through a cation exchange column. The eluate is adjusted to pH 7-10 and passed through an anion exchange column. The second column is eluted with 0.3M HCl solution and the resulting acidic eluate is analyzed with liquid chromatography coupled with postcolumn fluorescence detection. The mean recoveries for GLYPH in barley, canola, dry pea, flax, soybean, wheat, and white bean ranged from 90.0 to 98.1%, with coefficients of variation (CV) from 2.9 to 10.0% and limits of detection (LOD) from 0.07 to 0.14 ppm. Similarly, mean recoveries for AMPA in the same crops ranged from 87.4 to 98.9%, with CV from 4.6 to 7.7 and LOD from 0.05 to 0.12 ppm. Using this method, an analyst can routinely analyze 6 samples per 1.5 days. The advantages of this procedure are discussed.