{"title":"在海水中的分解和应用","authors":"D. Sanabria, J. Lehr","doi":"10.1109/PPPS34859.2019.9009914","DOIUrl":null,"url":null,"abstract":"As opposed to pure water, electrical breakdown in seawater has not been studied broadly. In seawater, the ions are provided via the salt content, leading to a conductivity of about 53mS/cm. In contrast purified water has a theoretical conductivity of 55nS/cm. The hypothesis presented here is that when short pulses are applied to seawater the contribution of the ions to current conduction is weakened due to the low drift velocity of the ions, consequently exhibiting an insulator-like behavior. UNM is testing the properties of seawater breakdown to identify opportunities to exploit different applications of this phenomenon. Tests have been performed with a variety of Na2S2O3 aqueous solutions applying ~6ns pulses in a custom designed chamber. Breakdown events are observed at low concentrations and high voltage, FWHM, rise time, and inter electrode distance are also correlated and different electrode geometries explored. Analysis of the obtained results show that breakdown in seawater is achievable with more energy and will be implemented in future experiments.","PeriodicalId":103240,"journal":{"name":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breakdown in Seawater and Applications\",\"authors\":\"D. Sanabria, J. Lehr\",\"doi\":\"10.1109/PPPS34859.2019.9009914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As opposed to pure water, electrical breakdown in seawater has not been studied broadly. In seawater, the ions are provided via the salt content, leading to a conductivity of about 53mS/cm. In contrast purified water has a theoretical conductivity of 55nS/cm. The hypothesis presented here is that when short pulses are applied to seawater the contribution of the ions to current conduction is weakened due to the low drift velocity of the ions, consequently exhibiting an insulator-like behavior. UNM is testing the properties of seawater breakdown to identify opportunities to exploit different applications of this phenomenon. Tests have been performed with a variety of Na2S2O3 aqueous solutions applying ~6ns pulses in a custom designed chamber. Breakdown events are observed at low concentrations and high voltage, FWHM, rise time, and inter electrode distance are also correlated and different electrode geometries explored. Analysis of the obtained results show that breakdown in seawater is achievable with more energy and will be implemented in future experiments.\",\"PeriodicalId\":103240,\"journal\":{\"name\":\"2019 IEEE Pulsed Power & Plasma Science (PPPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Pulsed Power & Plasma Science (PPPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPPS34859.2019.9009914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS34859.2019.9009914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As opposed to pure water, electrical breakdown in seawater has not been studied broadly. In seawater, the ions are provided via the salt content, leading to a conductivity of about 53mS/cm. In contrast purified water has a theoretical conductivity of 55nS/cm. The hypothesis presented here is that when short pulses are applied to seawater the contribution of the ions to current conduction is weakened due to the low drift velocity of the ions, consequently exhibiting an insulator-like behavior. UNM is testing the properties of seawater breakdown to identify opportunities to exploit different applications of this phenomenon. Tests have been performed with a variety of Na2S2O3 aqueous solutions applying ~6ns pulses in a custom designed chamber. Breakdown events are observed at low concentrations and high voltage, FWHM, rise time, and inter electrode distance are also correlated and different electrode geometries explored. Analysis of the obtained results show that breakdown in seawater is achievable with more energy and will be implemented in future experiments.