光数据存储用Te及Te合金薄膜的稳定性

Wen-yaung Lee, H. Wieder
{"title":"光数据存储用Te及Te合金薄膜的稳定性","authors":"Wen-yaung Lee, H. Wieder","doi":"10.1364/ods.1983.thb3","DOIUrl":null,"url":null,"abstract":"Thin Te films(5-30nm) are the most widely studied media for optical data storage due to their excellent laser writing characteristics. However, the archival life time of Te films still remains an important issue. We reported1 previously that the degradation resistance of thin Te films can be significantly improved by adjusting the deposition conditions and by a post thermal annealing step. Since information is stored in ~1μm size holes in optical recording, degradation studies based on measurements over a large area(e.g., 1cm2) can not be expected to provide complete archival life time data if degradation occurs within 1μm2 area. To this end, degradation studies have to be carried out microscopically. We have been studying both the macro- and micro-corrosion of Te and Te-alloy films. Some results of these studies are reported here.","PeriodicalId":268493,"journal":{"name":"Topical Meeting on Optical Data Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Stability of Te and Te-Alloy Films for Optical Data Storage\",\"authors\":\"Wen-yaung Lee, H. Wieder\",\"doi\":\"10.1364/ods.1983.thb3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin Te films(5-30nm) are the most widely studied media for optical data storage due to their excellent laser writing characteristics. However, the archival life time of Te films still remains an important issue. We reported1 previously that the degradation resistance of thin Te films can be significantly improved by adjusting the deposition conditions and by a post thermal annealing step. Since information is stored in ~1μm size holes in optical recording, degradation studies based on measurements over a large area(e.g., 1cm2) can not be expected to provide complete archival life time data if degradation occurs within 1μm2 area. To this end, degradation studies have to be carried out microscopically. We have been studying both the macro- and micro-corrosion of Te and Te-alloy films. Some results of these studies are reported here.\",\"PeriodicalId\":268493,\"journal\":{\"name\":\"Topical Meeting on Optical Data Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topical Meeting on Optical Data Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/ods.1983.thb3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Optical Data Storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ods.1983.thb3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

薄膜(5-30nm)由于其优异的激光写入特性而成为研究最广泛的光数据存储介质。然而,电影的档案寿命仍然是一个重要的问题。我们之前报道过,通过调整沉积条件和热后退火步骤可以显著提高Te薄膜的抗降解性。由于在光学记录中信息存储在~1μm大小的孔中,因此基于大面积测量的退化研究(例如:如果在1μm2范围内发生退化,则不能期望提供完整的档案寿命数据。为此目的,必须在微观上进行降解研究。我们一直在研究Te和Te合金薄膜的宏观和微观腐蚀。现报告部分研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Stability of Te and Te-Alloy Films for Optical Data Storage
Thin Te films(5-30nm) are the most widely studied media for optical data storage due to their excellent laser writing characteristics. However, the archival life time of Te films still remains an important issue. We reported1 previously that the degradation resistance of thin Te films can be significantly improved by adjusting the deposition conditions and by a post thermal annealing step. Since information is stored in ~1μm size holes in optical recording, degradation studies based on measurements over a large area(e.g., 1cm2) can not be expected to provide complete archival life time data if degradation occurs within 1μm2 area. To this end, degradation studies have to be carried out microscopically. We have been studying both the macro- and micro-corrosion of Te and Te-alloy films. Some results of these studies are reported here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvements in Corrosion Resistance of Tb-Fe Thin Films Thermal Analysis of Thin Films Under Pulsed Laser Irradiation The Optimem 1000 Optical Disk Drive Progress in Frequency Domain Optical Storage Thickness Dependence of Magneto-Optic Effects in Tb-Fe Film
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1