分析器:用于检测网络钓鱼的分布式模型

Mariya Shmalko, A. Abuadbba, R. Gaire, Tingmin Wu, Hye-young Paik, Surya Nepal
{"title":"分析器:用于检测网络钓鱼的分布式模型","authors":"Mariya Shmalko, A. Abuadbba, R. Gaire, Tingmin Wu, Hye-young Paik, Surya Nepal","doi":"10.1109/ICDCS54860.2022.00152","DOIUrl":null,"url":null,"abstract":"Many Machine Learning (ML) based phishing detection algorithms are not adept to recognise \"concept drift\"; attackers introduce small changes in the statistical characteristics of their phishing attempts to successfully bypass detection. This leads to the classification problem of frequent false positives and false negatives, and a reliance on manual reporting of phishing by users. Profiler is a distributed phishing risk assessment tool that combines three email profiling dimensions: (1) threat level, (2) cognitive manipulation, and (3) email content type to detect email phishing. Unlike pure ML-based approaches, Profiler does not require large data sets to be effective and evaluations on real-world data sets show that it can be useful in conjunction with ML algorithms to mitigate the impact of concept drift.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Profiler: Distributed Model to Detect Phishing\",\"authors\":\"Mariya Shmalko, A. Abuadbba, R. Gaire, Tingmin Wu, Hye-young Paik, Surya Nepal\",\"doi\":\"10.1109/ICDCS54860.2022.00152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many Machine Learning (ML) based phishing detection algorithms are not adept to recognise \\\"concept drift\\\"; attackers introduce small changes in the statistical characteristics of their phishing attempts to successfully bypass detection. This leads to the classification problem of frequent false positives and false negatives, and a reliance on manual reporting of phishing by users. Profiler is a distributed phishing risk assessment tool that combines three email profiling dimensions: (1) threat level, (2) cognitive manipulation, and (3) email content type to detect email phishing. Unlike pure ML-based approaches, Profiler does not require large data sets to be effective and evaluations on real-world data sets show that it can be useful in conjunction with ML algorithms to mitigate the impact of concept drift.\",\"PeriodicalId\":225883,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS54860.2022.00152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多基于机器学习(ML)的网络钓鱼检测算法不擅长识别“概念漂移”;攻击者在其网络钓鱼尝试的统计特征中引入微小的变化,以成功绕过检测。这导致了频繁的误报和误报的分类问题,并且依赖于用户手动报告网络钓鱼。Profiler是一种分布式网络钓鱼风险评估工具,它结合了三个电子邮件分析维度:(1)威胁级别,(2)认知操作,(3)电子邮件内容类型来检测电子邮件网络钓鱼。与纯粹的基于ML的方法不同,Profiler不需要大数据集就能有效,对现实世界数据集的评估表明,它可以与ML算法结合使用,以减轻概念漂移的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Profiler: Distributed Model to Detect Phishing
Many Machine Learning (ML) based phishing detection algorithms are not adept to recognise "concept drift"; attackers introduce small changes in the statistical characteristics of their phishing attempts to successfully bypass detection. This leads to the classification problem of frequent false positives and false negatives, and a reliance on manual reporting of phishing by users. Profiler is a distributed phishing risk assessment tool that combines three email profiling dimensions: (1) threat level, (2) cognitive manipulation, and (3) email content type to detect email phishing. Unlike pure ML-based approaches, Profiler does not require large data sets to be effective and evaluations on real-world data sets show that it can be useful in conjunction with ML algorithms to mitigate the impact of concept drift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nezha: Exploiting Concurrency for Transaction Processing in DAG-based Blockchains Toward Cleansing Backdoored Neural Networks in Federated Learning Themis: An Equal, Unpredictable, and Scalable Consensus for Consortium Blockchain IoDSCF: A Store-Carry-Forward Routing Protocol for joint Bus Networks and Internet of Drones FlowValve: Packet Scheduling Offloaded on NP-based SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1