Jibes & Delights:有针对性的侮辱和赞美数据集,以解决在线滥用

Ravsimar Sodhi, Kartikey Pant, Radhika Mamidi
{"title":"Jibes & Delights:有针对性的侮辱和赞美数据集,以解决在线滥用","authors":"Ravsimar Sodhi, Kartikey Pant, Radhika Mamidi","doi":"10.18653/v1/2021.woah-1.14","DOIUrl":null,"url":null,"abstract":"Online abuse and offensive language on social media have become widespread problems in today’s digital age. In this paper, we contribute a Reddit-based dataset, consisting of 68,159 insults and 51,102 compliments targeted at individuals instead of targeting a particular community or race. Secondly, we benchmark multiple existing state-of-the-art models for both classification and unsupervised style transfer on the dataset. Finally, we analyse the experimental results and conclude that the transfer task is challenging, requiring the models to understand the high degree of creativity exhibited in the data.","PeriodicalId":166161,"journal":{"name":"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Jibes & Delights: A Dataset of Targeted Insults and Compliments to Tackle Online Abuse\",\"authors\":\"Ravsimar Sodhi, Kartikey Pant, Radhika Mamidi\",\"doi\":\"10.18653/v1/2021.woah-1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online abuse and offensive language on social media have become widespread problems in today’s digital age. In this paper, we contribute a Reddit-based dataset, consisting of 68,159 insults and 51,102 compliments targeted at individuals instead of targeting a particular community or race. Secondly, we benchmark multiple existing state-of-the-art models for both classification and unsupervised style transfer on the dataset. Finally, we analyse the experimental results and conclude that the transfer task is challenging, requiring the models to understand the high degree of creativity exhibited in the data.\",\"PeriodicalId\":166161,\"journal\":{\"name\":\"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.woah-1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.woah-1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在当今的数字时代,社交媒体上的网络辱骂和攻击性语言已经成为普遍存在的问题。在本文中,我们提供了一个基于reddit的数据集,其中包括针对个人的68,159种侮辱和51,102种赞美,而不是针对特定的社区或种族。其次,我们在数据集上对多个现有的最先进的分类和无监督风格迁移模型进行基准测试。最后,我们分析了实验结果,得出迁移任务具有挑战性的结论,要求模型理解数据中显示的高度创造力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jibes & Delights: A Dataset of Targeted Insults and Compliments to Tackle Online Abuse
Online abuse and offensive language on social media have become widespread problems in today’s digital age. In this paper, we contribute a Reddit-based dataset, consisting of 68,159 insults and 51,102 compliments targeted at individuals instead of targeting a particular community or race. Secondly, we benchmark multiple existing state-of-the-art models for both classification and unsupervised style transfer on the dataset. Finally, we analyse the experimental results and conclude that the transfer task is challenging, requiring the models to understand the high degree of creativity exhibited in the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Racist or Sexist Meme? Classifying Memes beyond Hateful A Large-Scale English Multi-Label Twitter Dataset for Cyberbullying and Online Abuse Detection Multimodal or Text? Retrieval or BERT? Benchmarking Classifiers for the Shared Task on Hateful Memes Abusive Language on Social Media Through the Legal Looking Glass Targets and Aspects in Social Media Hate Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1