基于逐像素知识蒸馏策略的立体图像超分辨率

Li Ma, Sumei Li
{"title":"基于逐像素知识蒸馏策略的立体图像超分辨率","authors":"Li Ma, Sumei Li","doi":"10.1109/VCIP53242.2021.9675446","DOIUrl":null,"url":null,"abstract":"In stereo image super-resolution (SR), it is equally important to utilize intra-view and cross-view information. However, most existing methods only focus on the exploration of cross-view information and neglect the full mining of intra-view information, which limits the reconstruction performance of these methods. Since single image SR (SISR) methods are powerful in intra-view information exploitation, we propose to introduce the knowledge distillation strategy to transfer the knowledge of a SISR network (teacher network) to a stereo image SR network (student network). With the help of the teacher network, the student network can easily learn more intra-view information. Specifically, we propose pixel-wise distillation as the implementation method, which not only improves the intra-view information extraction ability of student network, but also ensures the effective learning of cross-view information. Moreover, we propose a lightweight student network named Adaptive Residual Feature Aggregation network (ARFAnet). Its main unit, the ARFA module, can aggregate informative residual features and produce more representative features for image reconstruction. Experimental results demonstrate that our teacher-student network achieves state-of-the-art performance on all benchmark datasets.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereo Image Super-Resolution Based on Pixel-Wise Knowledge Distillation Strategy\",\"authors\":\"Li Ma, Sumei Li\",\"doi\":\"10.1109/VCIP53242.2021.9675446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In stereo image super-resolution (SR), it is equally important to utilize intra-view and cross-view information. However, most existing methods only focus on the exploration of cross-view information and neglect the full mining of intra-view information, which limits the reconstruction performance of these methods. Since single image SR (SISR) methods are powerful in intra-view information exploitation, we propose to introduce the knowledge distillation strategy to transfer the knowledge of a SISR network (teacher network) to a stereo image SR network (student network). With the help of the teacher network, the student network can easily learn more intra-view information. Specifically, we propose pixel-wise distillation as the implementation method, which not only improves the intra-view information extraction ability of student network, but also ensures the effective learning of cross-view information. Moreover, we propose a lightweight student network named Adaptive Residual Feature Aggregation network (ARFAnet). Its main unit, the ARFA module, can aggregate informative residual features and produce more representative features for image reconstruction. Experimental results demonstrate that our teacher-student network achieves state-of-the-art performance on all benchmark datasets.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在立体图像超分辨率(SR)中,利用视图内和跨视图信息同样重要。然而,现有的方法大多只关注跨视图信息的挖掘,而忽略了对视图内信息的充分挖掘,这限制了这些方法的重建性能。由于单幅图像SR (SISR)方法在视图内信息开发方面具有强大的功能,我们建议引入知识蒸馏策略,将单幅图像SR网络(教师网络)中的知识转移到立体图像SR网络(学生网络)中。在教师网络的帮助下,学生网络可以很容易地了解更多的视图内信息。具体来说,我们提出逐像素提取作为实现方法,既提高了学生网络的视图内信息提取能力,又保证了跨视图信息的有效学习。此外,我们还提出了一种轻量级的学生网络——自适应残差特征聚合网络(ARFAnet)。其主要单元ARFA模块可以聚合信息残差特征,产生更有代表性的图像重构特征。实验结果表明,我们的师生网络在所有基准数据集上都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stereo Image Super-Resolution Based on Pixel-Wise Knowledge Distillation Strategy
In stereo image super-resolution (SR), it is equally important to utilize intra-view and cross-view information. However, most existing methods only focus on the exploration of cross-view information and neglect the full mining of intra-view information, which limits the reconstruction performance of these methods. Since single image SR (SISR) methods are powerful in intra-view information exploitation, we propose to introduce the knowledge distillation strategy to transfer the knowledge of a SISR network (teacher network) to a stereo image SR network (student network). With the help of the teacher network, the student network can easily learn more intra-view information. Specifically, we propose pixel-wise distillation as the implementation method, which not only improves the intra-view information extraction ability of student network, but also ensures the effective learning of cross-view information. Moreover, we propose a lightweight student network named Adaptive Residual Feature Aggregation network (ARFAnet). Its main unit, the ARFA module, can aggregate informative residual features and produce more representative features for image reconstruction. Experimental results demonstrate that our teacher-student network achieves state-of-the-art performance on all benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seq-Masks: Bridging the gap between appearance and gait modeling for video-based person re-identification Deep Metric Learning for Human Action Recognition with SlowFast Networks LRS-Net: invisible QR Code embedding, detection, and restoration Deep Color Constancy Using Spatio-Temporal Correlation of High-Speed Video Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1