{"title":"基于神经网络的高速公路交通数据预测","authors":"C. Taylor, D. Meldrum","doi":"10.1109/VNIS.1995.518843","DOIUrl":null,"url":null,"abstract":"A multi-layer perceptron type of artificial neural network predicts congested freeway data while demonstrating robustness to faulty loop detector data. Test results on historical data from the I-5 freeway in Seattle, Washington demonstrate that a neural network can successfully predict volume and occupancy one minute in advance, as well as fill in the gaps for missing data with an appropriate prediction. The volume and occupancy predictions are used as inputs to a fuzzy logic ramp metering algorithm currently under testing.","PeriodicalId":337008,"journal":{"name":"Pacific Rim TransTech Conference. 1995 Vehicle Navigation and Information Systems Conference Proceedings. 6th International VNIS. A Ride into the Future","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Freeway traffic data prediction using neural networks\",\"authors\":\"C. Taylor, D. Meldrum\",\"doi\":\"10.1109/VNIS.1995.518843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-layer perceptron type of artificial neural network predicts congested freeway data while demonstrating robustness to faulty loop detector data. Test results on historical data from the I-5 freeway in Seattle, Washington demonstrate that a neural network can successfully predict volume and occupancy one minute in advance, as well as fill in the gaps for missing data with an appropriate prediction. The volume and occupancy predictions are used as inputs to a fuzzy logic ramp metering algorithm currently under testing.\",\"PeriodicalId\":337008,\"journal\":{\"name\":\"Pacific Rim TransTech Conference. 1995 Vehicle Navigation and Information Systems Conference Proceedings. 6th International VNIS. A Ride into the Future\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Rim TransTech Conference. 1995 Vehicle Navigation and Information Systems Conference Proceedings. 6th International VNIS. A Ride into the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VNIS.1995.518843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Rim TransTech Conference. 1995 Vehicle Navigation and Information Systems Conference Proceedings. 6th International VNIS. A Ride into the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNIS.1995.518843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

多层感知器类型的人工神经网络预测拥挤的高速公路数据,同时展示对故障环路检测器数据的鲁棒性。对华盛顿州西雅图I-5高速公路历史数据的测试结果表明,神经网络可以提前一分钟成功预测车流量和入住率,并通过适当的预测填补缺失数据的空白。数量和占用预测被用作输入到模糊逻辑匝道计量算法目前正在测试中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Freeway traffic data prediction using neural networks
A multi-layer perceptron type of artificial neural network predicts congested freeway data while demonstrating robustness to faulty loop detector data. Test results on historical data from the I-5 freeway in Seattle, Washington demonstrate that a neural network can successfully predict volume and occupancy one minute in advance, as well as fill in the gaps for missing data with an appropriate prediction. The volume and occupancy predictions are used as inputs to a fuzzy logic ramp metering algorithm currently under testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RTI/ITS in integrated operation-Norway's regional road traffic centres Model performance of OD-theta for calibrating an O-D trip table in a stochastic congested network-a case study in the Tamshui area Infrared communication for dynamic route guidance and driver information services Public acceptance of automated highways: results from national focus groups Adaptive route selection for dynamic route guidance system based on fuzzy-neural approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1