Ugo Mureddu, O. Petura, Nathalie Bochard, L. Bossuet, V. Fischer
{"title":"基于Flash fpga物理不可克隆功能的振荡器高效设计","authors":"Ugo Mureddu, O. Petura, Nathalie Bochard, L. Bossuet, V. Fischer","doi":"10.1109/IVSW.2017.8031560","DOIUrl":null,"url":null,"abstract":"With the scaling down of electronic devices and the boom of wireless communications, more and more smart devices are interconnected in what we call the Internet of Things. Connecting devices of everyday use can greatly improve our comfort, but it can also introduce unprecedented security problems. With billions of devices connected there is a huge risk of unauthorized use. In this context, Physical Unclonable Functions (PUFs) are a promising solution since they extract device intrinsic fingerprint that can be used for hardware identification and authentication. Here we present the first fully functional implementation of Oscillator based PUFs on Flash based FPGA. The implementation is presented for the Ring Oscillator based PUF and the Transient Effect Ring Oscillatory based PUF. After explaining those two PUF principles, we give all the necessary design practices to follow to obtain an efficient PUF implementation on Flash FPGA. Finally, we present the characterization of the PUFs and compare it to previous work. To the best of our knowledge, it is the first work which deals with the implementation of Oscillator based PUF on Flash FPGAs. Moreover, all design files are available online to ensure repeatability.","PeriodicalId":184196,"journal":{"name":"2017 IEEE 2nd International Verification and Security Workshop (IVSW)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient design of Oscillator based Physical Unclonable Functions on Flash FPGAs\",\"authors\":\"Ugo Mureddu, O. Petura, Nathalie Bochard, L. Bossuet, V. Fischer\",\"doi\":\"10.1109/IVSW.2017.8031560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the scaling down of electronic devices and the boom of wireless communications, more and more smart devices are interconnected in what we call the Internet of Things. Connecting devices of everyday use can greatly improve our comfort, but it can also introduce unprecedented security problems. With billions of devices connected there is a huge risk of unauthorized use. In this context, Physical Unclonable Functions (PUFs) are a promising solution since they extract device intrinsic fingerprint that can be used for hardware identification and authentication. Here we present the first fully functional implementation of Oscillator based PUFs on Flash based FPGA. The implementation is presented for the Ring Oscillator based PUF and the Transient Effect Ring Oscillatory based PUF. After explaining those two PUF principles, we give all the necessary design practices to follow to obtain an efficient PUF implementation on Flash FPGA. Finally, we present the characterization of the PUFs and compare it to previous work. To the best of our knowledge, it is the first work which deals with the implementation of Oscillator based PUF on Flash FPGAs. Moreover, all design files are available online to ensure repeatability.\",\"PeriodicalId\":184196,\"journal\":{\"name\":\"2017 IEEE 2nd International Verification and Security Workshop (IVSW)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 2nd International Verification and Security Workshop (IVSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVSW.2017.8031560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 2nd International Verification and Security Workshop (IVSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVSW.2017.8031560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient design of Oscillator based Physical Unclonable Functions on Flash FPGAs
With the scaling down of electronic devices and the boom of wireless communications, more and more smart devices are interconnected in what we call the Internet of Things. Connecting devices of everyday use can greatly improve our comfort, but it can also introduce unprecedented security problems. With billions of devices connected there is a huge risk of unauthorized use. In this context, Physical Unclonable Functions (PUFs) are a promising solution since they extract device intrinsic fingerprint that can be used for hardware identification and authentication. Here we present the first fully functional implementation of Oscillator based PUFs on Flash based FPGA. The implementation is presented for the Ring Oscillator based PUF and the Transient Effect Ring Oscillatory based PUF. After explaining those two PUF principles, we give all the necessary design practices to follow to obtain an efficient PUF implementation on Flash FPGA. Finally, we present the characterization of the PUFs and compare it to previous work. To the best of our knowledge, it is the first work which deals with the implementation of Oscillator based PUF on Flash FPGAs. Moreover, all design files are available online to ensure repeatability.