带开/关通道密钥预分配下无线传感器网络的安全连接

Jun Zhao
{"title":"带开/关通道密钥预分配下无线传感器网络的安全连接","authors":"Jun Zhao","doi":"10.1109/ICDCS.2017.186","DOIUrl":null,"url":null,"abstract":"Security is an important issue in wireless sensor networks (WSNs), which are often deployed in hostile environments. The q-composite key predistribution scheme has been recognized as a suitable approach to secure WSNs. Although the q-composite scheme has received much attention in the literature, there is still a lack of rigorous analysis for secure WSNs operating under the q-composite scheme in consideration of the unreliability of links. One main difficulty lies in analyzing the network topology whose links are not independent. Wireless links can be unreliable in practice due to the presence of physical barriers between sensors or because of harsh environmental conditions severely impairing communications. In this paper, we resolve the difficult challenge and investigate k-connectivity in secure WSNs operating under the q-composite scheme with unreliable communication links modeled as independent on/off channels, where k-connectivity ensures connectivity despite the failure of any (k - 1) sensors or links, and connectivity means that any two sensors can find a path in between for secure communication. Specifically, we derive the asymptotically exact probability and a zero-one law for k-connectivity. We further use the theoretical results to provide design guidelines for secure WSNs. Experimental results also confirm the validity of our analytical findings.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure Connectivity of Wireless Sensor Networks Under Key Predistribution with on/off Channels\",\"authors\":\"Jun Zhao\",\"doi\":\"10.1109/ICDCS.2017.186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security is an important issue in wireless sensor networks (WSNs), which are often deployed in hostile environments. The q-composite key predistribution scheme has been recognized as a suitable approach to secure WSNs. Although the q-composite scheme has received much attention in the literature, there is still a lack of rigorous analysis for secure WSNs operating under the q-composite scheme in consideration of the unreliability of links. One main difficulty lies in analyzing the network topology whose links are not independent. Wireless links can be unreliable in practice due to the presence of physical barriers between sensors or because of harsh environmental conditions severely impairing communications. In this paper, we resolve the difficult challenge and investigate k-connectivity in secure WSNs operating under the q-composite scheme with unreliable communication links modeled as independent on/off channels, where k-connectivity ensures connectivity despite the failure of any (k - 1) sensors or links, and connectivity means that any two sensors can find a path in between for secure communication. Specifically, we derive the asymptotically exact probability and a zero-one law for k-connectivity. We further use the theoretical results to provide design guidelines for secure WSNs. Experimental results also confirm the validity of our analytical findings.\",\"PeriodicalId\":127689,\"journal\":{\"name\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2017.186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络通常部署在恶劣环境中,安全是其中的一个重要问题。q-组合密钥预分配方案是一种安全的无线传感器网络方案。虽然q-composite方案在文献中得到了广泛的关注,但是考虑到链路的不可靠性,对于在q-composite方案下工作的安全wsn,目前还缺乏严格的分析。一个主要的难点在于分析链路不独立的网络拓扑结构。由于传感器之间存在物理障碍或恶劣的环境条件严重影响通信,无线链路在实践中可能不可靠。在本文中,我们解决了这一难题,并研究了在不可靠通信链路建模为独立开/关通道的q-复合方案下运行的安全wsn中的k-连通性,其中k-连通性确保了任何(k - 1)传感器或链路失效时的连通性,并且连通性意味着任何两个传感器都可以在两者之间找到安全通信的路径。具体地,我们导出了k-连通性的渐近精确概率和一个0 - 1定律。我们进一步利用理论结果为安全的无线传感器网络提供设计指南。实验结果也证实了分析结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secure Connectivity of Wireless Sensor Networks Under Key Predistribution with on/off Channels
Security is an important issue in wireless sensor networks (WSNs), which are often deployed in hostile environments. The q-composite key predistribution scheme has been recognized as a suitable approach to secure WSNs. Although the q-composite scheme has received much attention in the literature, there is still a lack of rigorous analysis for secure WSNs operating under the q-composite scheme in consideration of the unreliability of links. One main difficulty lies in analyzing the network topology whose links are not independent. Wireless links can be unreliable in practice due to the presence of physical barriers between sensors or because of harsh environmental conditions severely impairing communications. In this paper, we resolve the difficult challenge and investigate k-connectivity in secure WSNs operating under the q-composite scheme with unreliable communication links modeled as independent on/off channels, where k-connectivity ensures connectivity despite the failure of any (k - 1) sensors or links, and connectivity means that any two sensors can find a path in between for secure communication. Specifically, we derive the asymptotically exact probability and a zero-one law for k-connectivity. We further use the theoretical results to provide design guidelines for secure WSNs. Experimental results also confirm the validity of our analytical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximity Awareness Approach to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network ACTiCLOUD: Enabling the Next Generation of Cloud Applications The Internet of Things and Multiagent Systems: Decentralized Intelligence in Distributed Computing Decentralised Runtime Monitoring for Access Control Systems in Cloud Federations The Case for Using Content-Centric Networking for Distributing High-Energy Physics Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1