{"title":"使用遗传算法和基于树的编码寻找负载诱导测试场景","authors":"Ege Apak, Ayse Tosun Misirli","doi":"10.1145/3387940.3392216","DOIUrl":null,"url":null,"abstract":"Load test is conducted in order to gain an insight to the characteristics of a system under various amount of load. Since the combination of possible actions a user can follow from start to finish is possibly endless, the possibility of missing a load inducing scenario by using a traditional load testing software is highly probable. In this work, we implement a rule-aided scenario generation algorithm and find the possible scenarios that a high amount of load is generated by using genetic algorithms to drive the search forward.","PeriodicalId":309659,"journal":{"name":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Load Inducing Test Scenarios Using Genetic Algorithms and Tree Based Encoding\",\"authors\":\"Ege Apak, Ayse Tosun Misirli\",\"doi\":\"10.1145/3387940.3392216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load test is conducted in order to gain an insight to the characteristics of a system under various amount of load. Since the combination of possible actions a user can follow from start to finish is possibly endless, the possibility of missing a load inducing scenario by using a traditional load testing software is highly probable. In this work, we implement a rule-aided scenario generation algorithm and find the possible scenarios that a high amount of load is generated by using genetic algorithms to drive the search forward.\",\"PeriodicalId\":309659,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387940.3392216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387940.3392216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finding Load Inducing Test Scenarios Using Genetic Algorithms and Tree Based Encoding
Load test is conducted in order to gain an insight to the characteristics of a system under various amount of load. Since the combination of possible actions a user can follow from start to finish is possibly endless, the possibility of missing a load inducing scenario by using a traditional load testing software is highly probable. In this work, we implement a rule-aided scenario generation algorithm and find the possible scenarios that a high amount of load is generated by using genetic algorithms to drive the search forward.