使用遗传算法和基于树的编码寻找负载诱导测试场景

Ege Apak, Ayse Tosun Misirli
{"title":"使用遗传算法和基于树的编码寻找负载诱导测试场景","authors":"Ege Apak, Ayse Tosun Misirli","doi":"10.1145/3387940.3392216","DOIUrl":null,"url":null,"abstract":"Load test is conducted in order to gain an insight to the characteristics of a system under various amount of load. Since the combination of possible actions a user can follow from start to finish is possibly endless, the possibility of missing a load inducing scenario by using a traditional load testing software is highly probable. In this work, we implement a rule-aided scenario generation algorithm and find the possible scenarios that a high amount of load is generated by using genetic algorithms to drive the search forward.","PeriodicalId":309659,"journal":{"name":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Load Inducing Test Scenarios Using Genetic Algorithms and Tree Based Encoding\",\"authors\":\"Ege Apak, Ayse Tosun Misirli\",\"doi\":\"10.1145/3387940.3392216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load test is conducted in order to gain an insight to the characteristics of a system under various amount of load. Since the combination of possible actions a user can follow from start to finish is possibly endless, the possibility of missing a load inducing scenario by using a traditional load testing software is highly probable. In this work, we implement a rule-aided scenario generation algorithm and find the possible scenarios that a high amount of load is generated by using genetic algorithms to drive the search forward.\",\"PeriodicalId\":309659,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387940.3392216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387940.3392216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

负载测试是为了深入了解系统在不同负载下的特性。由于用户可以从头到尾执行的可能操作组合可能是无穷无尽的,因此使用传统负载测试软件很可能会错过负载诱导场景。在这项工作中,我们实现了一种规则辅助的场景生成算法,并通过使用遗传算法来驱动搜索向前,找到可能产生大量负载的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding Load Inducing Test Scenarios Using Genetic Algorithms and Tree Based Encoding
Load test is conducted in order to gain an insight to the characteristics of a system under various amount of load. Since the combination of possible actions a user can follow from start to finish is possibly endless, the possibility of missing a load inducing scenario by using a traditional load testing software is highly probable. In this work, we implement a rule-aided scenario generation algorithm and find the possible scenarios that a high amount of load is generated by using genetic algorithms to drive the search forward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A Software Quality Perspective Generating API Test Data Using Deep Reinforcement Learning Human Factors in the Study of Automatic Software Repair: Future Directions for Research with Industry Strategies for Crowdworkers to Overcome Barriers in Competition-based Software Crowdsourcing Development Centralized Generic Interfaces in Hardware/Software Co-design for AI Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1