基于量子粒子群优化的多级最小交叉熵阈值选择

Yong Zhao, Z. Fang, Kanwei Wang, Hui Pang
{"title":"基于量子粒子群优化的多级最小交叉熵阈值选择","authors":"Yong Zhao, Z. Fang, Kanwei Wang, Hui Pang","doi":"10.1109/SNPD.2007.85","DOIUrl":null,"url":null,"abstract":"The minimum cross entropy thresholding (MCET) has been proven as an efficient method in image segmentation for bilevel thresholding. However, this method is computationally intensive when extended to multilevel thresholding. This paper first employs a recursive programming technique which can reduce an order of magnitude for computing the MCET fitness function. Then, a quantum particle swarm optimization (QPSO) algorithm is proposed for searching the near- optimal MCET thresholds. The experimental results show that the proposed QPSO-based algorithm can get ideal segmentation result with less computation cost.","PeriodicalId":197058,"journal":{"name":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Multilevel Minimum Cross Entropy Threshold Selection Based on Quantum Particle Swarm Optimization\",\"authors\":\"Yong Zhao, Z. Fang, Kanwei Wang, Hui Pang\",\"doi\":\"10.1109/SNPD.2007.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum cross entropy thresholding (MCET) has been proven as an efficient method in image segmentation for bilevel thresholding. However, this method is computationally intensive when extended to multilevel thresholding. This paper first employs a recursive programming technique which can reduce an order of magnitude for computing the MCET fitness function. Then, a quantum particle swarm optimization (QPSO) algorithm is proposed for searching the near- optimal MCET thresholds. The experimental results show that the proposed QPSO-based algorithm can get ideal segmentation result with less computation cost.\",\"PeriodicalId\":197058,\"journal\":{\"name\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2007.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2007.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

最小交叉熵阈值法是一种有效的图像分割方法。然而,当扩展到多级阈值时,这种方法的计算量很大。本文首先采用递归规划技术,将MCET适应度函数的计算降低一个数量级。在此基础上,提出了一种基于量子粒子群算法的近最优MCET阈值搜索算法。实验结果表明,该算法能够以较小的计算量获得理想的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multilevel Minimum Cross Entropy Threshold Selection Based on Quantum Particle Swarm Optimization
The minimum cross entropy thresholding (MCET) has been proven as an efficient method in image segmentation for bilevel thresholding. However, this method is computationally intensive when extended to multilevel thresholding. This paper first employs a recursive programming technique which can reduce an order of magnitude for computing the MCET fitness function. Then, a quantum particle swarm optimization (QPSO) algorithm is proposed for searching the near- optimal MCET thresholds. The experimental results show that the proposed QPSO-based algorithm can get ideal segmentation result with less computation cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An RBF Network Based Beamformer for Mimo Wireless Communication Systems Tailoring Software Evolution Process Communication Optimization Algorithms based on Extend Data Flow Graph Improving Blind Equalization Algorithm for Wireless Communication Systems Speech Enhancement Employing Modified a Priori SNR Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1