多资产交易环境下的深度强化学习

Ali Hirsa, Branka Hadji Misheva, Joerg Osterrieder, Jan-Alexander Posth
{"title":"多资产交易环境下的深度强化学习","authors":"Ali Hirsa, Branka Hadji Misheva, Joerg Osterrieder, Jan-Alexander Posth","doi":"10.2139/ssrn.3867800","DOIUrl":null,"url":null,"abstract":"Financial trading has been widely analyzed for decades with market participants and academics always looking for advanced methods to improve trading performance. Deep reinforcement learning (DRL), a recently reinvigorated method with significant success in multiple domains, still has to show its benefit in the financial markets. We use a deep Q-network (DQN) to design long-short trading strategies for futures contracts. The state space consists of volatility-normalized daily returns, with buying or selling being the reinforcement learning action and the total reward defined as the cumulative profits from our actions. Our trading strategy is trained and tested both on real and simulated price series and we compare the results with an index benchmark. We analyze how training based on a combination of artificial data and actual price series can be successfully deployed in real markets. The trained reinforcement learning agent is applied to trading the E-mini S&P 500 continuous futures contract. Our results in this study are preliminary and need further improvement.","PeriodicalId":284021,"journal":{"name":"International Political Economy: Investment & Finance eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Reinforcement Learning on a Multi-Asset Environment for Trading\",\"authors\":\"Ali Hirsa, Branka Hadji Misheva, Joerg Osterrieder, Jan-Alexander Posth\",\"doi\":\"10.2139/ssrn.3867800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial trading has been widely analyzed for decades with market participants and academics always looking for advanced methods to improve trading performance. Deep reinforcement learning (DRL), a recently reinvigorated method with significant success in multiple domains, still has to show its benefit in the financial markets. We use a deep Q-network (DQN) to design long-short trading strategies for futures contracts. The state space consists of volatility-normalized daily returns, with buying or selling being the reinforcement learning action and the total reward defined as the cumulative profits from our actions. Our trading strategy is trained and tested both on real and simulated price series and we compare the results with an index benchmark. We analyze how training based on a combination of artificial data and actual price series can be successfully deployed in real markets. The trained reinforcement learning agent is applied to trading the E-mini S&P 500 continuous futures contract. Our results in this study are preliminary and need further improvement.\",\"PeriodicalId\":284021,\"journal\":{\"name\":\"International Political Economy: Investment & Finance eJournal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Political Economy: Investment & Finance eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3867800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Political Economy: Investment & Finance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3867800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

金融交易已经被广泛分析了几十年,市场参与者和学者一直在寻找先进的方法来提高交易绩效。深度强化学习(DRL)是最近在多个领域取得重大成功的一种重新活跃的方法,但它在金融市场上仍然需要显示其优势。我们使用深度q网络(DQN)来设计期货合约的多空交易策略。状态空间由波动性标准化的每日收益组成,买入或卖出是强化学习行为,总奖励定义为我们行为的累积利润。我们的交易策略是在真实和模拟价格序列上进行训练和测试的,我们将结果与指数基准进行比较。我们分析了基于人工数据和实际价格序列相结合的训练如何成功地应用于实际市场。将训练好的强化学习代理应用于E-mini标准普尔500指数连续期货合约的交易。我们的研究结果是初步的,需要进一步完善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning on a Multi-Asset Environment for Trading
Financial trading has been widely analyzed for decades with market participants and academics always looking for advanced methods to improve trading performance. Deep reinforcement learning (DRL), a recently reinvigorated method with significant success in multiple domains, still has to show its benefit in the financial markets. We use a deep Q-network (DQN) to design long-short trading strategies for futures contracts. The state space consists of volatility-normalized daily returns, with buying or selling being the reinforcement learning action and the total reward defined as the cumulative profits from our actions. Our trading strategy is trained and tested both on real and simulated price series and we compare the results with an index benchmark. We analyze how training based on a combination of artificial data and actual price series can be successfully deployed in real markets. The trained reinforcement learning agent is applied to trading the E-mini S&P 500 continuous futures contract. Our results in this study are preliminary and need further improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Socioemotional Wealth on Corporate Reporting Readability in a Multinational Family-Controlled Firm Stock Ownership of Federal Judges and its Impact on Corporations Place-Based Policies and the Geography of Corporate Investment Foreign bias in equity portfolios: Informational advantage or familiarity bias? Quantifying the Impact of Impact Investing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1