从神经网络数据库中选择最“有效”的缩短里德-所罗门代码

H. Benjamin, B. Kamali
{"title":"从神经网络数据库中选择最“有效”的缩短里德-所罗门代码","authors":"H. Benjamin, B. Kamali","doi":"10.1109/VETECF.2000.886682","DOIUrl":null,"url":null,"abstract":"The catalog of Reed-Solomon (RS) codes is a rather long one. To select a proper code for a given application, the system designer is compelled to deal with numerous tables, graphs and equations. We have reported our result of designing an artificial neural network (NN) from which one can select the most \"efficient\" unmodified RS code for a specific application. In this article we present the continuation of our work, in development of an artificial NN database for selection of shortened RS codes for a given application. A student version of the MATLAB Neural Networks Toolbox is used for NN simulation. The Levenberg-Marquardt learning algorithm is used to train the NN. The resultant NN has five inputs, nine units in the hidden layer, and two units in the output layer. The outputs are the shortened \"n\" and \"k\". The test data results show the accuracy of selecting the correct code length and code dimension is 84.4% for shortened codes.","PeriodicalId":186198,"journal":{"name":"Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152)","volume":"490 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Selection of the most \\\"efficient\\\" shortened Reed-Solomon code from a neural network database\",\"authors\":\"H. Benjamin, B. Kamali\",\"doi\":\"10.1109/VETECF.2000.886682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The catalog of Reed-Solomon (RS) codes is a rather long one. To select a proper code for a given application, the system designer is compelled to deal with numerous tables, graphs and equations. We have reported our result of designing an artificial neural network (NN) from which one can select the most \\\"efficient\\\" unmodified RS code for a specific application. In this article we present the continuation of our work, in development of an artificial NN database for selection of shortened RS codes for a given application. A student version of the MATLAB Neural Networks Toolbox is used for NN simulation. The Levenberg-Marquardt learning algorithm is used to train the NN. The resultant NN has five inputs, nine units in the hidden layer, and two units in the output layer. The outputs are the shortened \\\"n\\\" and \\\"k\\\". The test data results show the accuracy of selecting the correct code length and code dimension is 84.4% for shortened codes.\",\"PeriodicalId\":186198,\"journal\":{\"name\":\"Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152)\",\"volume\":\"490 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VETECF.2000.886682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETECF.2000.886682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Reed-Solomon (RS)代码的目录相当长。为了为给定的应用程序选择合适的代码,系统设计者不得不处理大量的表格、图表和方程。我们已经报告了我们设计一个人工神经网络(NN)的结果,从中可以为特定应用选择最“有效”的未修改RS代码。在这篇文章中,我们提出了我们的工作的延续,在开发一个人工神经网络数据库的选择缩短RS代码为给定的应用程序。学生版的MATLAB神经网络工具箱用于神经网络仿真。采用Levenberg-Marquardt学习算法对神经网络进行训练。得到的神经网络有5个输入,隐藏层有9个单元,输出层有2个单元。输出是缩写的“n”和“k”。试验数据表明,对于缩短码,码长和码维的选择正确率为84.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selection of the most "efficient" shortened Reed-Solomon code from a neural network database
The catalog of Reed-Solomon (RS) codes is a rather long one. To select a proper code for a given application, the system designer is compelled to deal with numerous tables, graphs and equations. We have reported our result of designing an artificial neural network (NN) from which one can select the most "efficient" unmodified RS code for a specific application. In this article we present the continuation of our work, in development of an artificial NN database for selection of shortened RS codes for a given application. A student version of the MATLAB Neural Networks Toolbox is used for NN simulation. The Levenberg-Marquardt learning algorithm is used to train the NN. The resultant NN has five inputs, nine units in the hidden layer, and two units in the output layer. The outputs are the shortened "n" and "k". The test data results show the accuracy of selecting the correct code length and code dimension is 84.4% for shortened codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple-input multiple-output (MIMO) radio channel measurements Extending earliest-due-date scheduling algorithms for wireless networks with location-dependent errors Performance evaluation of space-time block coding using a realistic mobile radio channel model Multicarrier CDMA systems with transmit diversity Combined temporal and spatial filter structures for CDMA systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1