F. A. Said, P. Menon, Mohd Nuriman Nawi, A. M. Md Zain, A. Jalar, B. Majlis
{"title":"基于铜-石墨烯sprr的尿素检测生物传感器","authors":"F. A. Said, P. Menon, Mohd Nuriman Nawi, A. M. Md Zain, A. Jalar, B. Majlis","doi":"10.1109/SMELEC.2016.7573642","DOIUrl":null,"url":null,"abstract":"This paper is intended to investigate the copper-graphene surface plasmon resonance (SPR)-based biosensor by considering the high adsorption efficiency of graphene. Copper (Cu) is used as a plasmonic material whereas graphene is used to prevent Cu from oxidation and enhance the reflectance intensity. Numerical investigation is performed using finite-difference-time-domain (FDTD) method by comparing the sensing performance such as reflectance intensity that explains the sensor sensitivity and the full-width-at-half-maximum (FWHM) of the spectrum for detection accuracy. The measurements were observed with various Cu thin film thicknesses ranging from 20nm to 80nm with 785nm operating wavelength. The proposed sensor shows that the 40nm-thick Cu-graphene (1 layer) SPR-based sensor gave better performance with narrower plasmonic spectrum line width (reflectance intensity of 91.2%) and better FWHM of 3.08°. The measured results also indicate that the Cu-graphene SPR-based sensor is suitable for detecting urea with refractive index of 1.49 in dielectric medium.","PeriodicalId":169983,"journal":{"name":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Copper-graphene SPR-based biosensor for urea detection\",\"authors\":\"F. A. Said, P. Menon, Mohd Nuriman Nawi, A. M. Md Zain, A. Jalar, B. Majlis\",\"doi\":\"10.1109/SMELEC.2016.7573642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is intended to investigate the copper-graphene surface plasmon resonance (SPR)-based biosensor by considering the high adsorption efficiency of graphene. Copper (Cu) is used as a plasmonic material whereas graphene is used to prevent Cu from oxidation and enhance the reflectance intensity. Numerical investigation is performed using finite-difference-time-domain (FDTD) method by comparing the sensing performance such as reflectance intensity that explains the sensor sensitivity and the full-width-at-half-maximum (FWHM) of the spectrum for detection accuracy. The measurements were observed with various Cu thin film thicknesses ranging from 20nm to 80nm with 785nm operating wavelength. The proposed sensor shows that the 40nm-thick Cu-graphene (1 layer) SPR-based sensor gave better performance with narrower plasmonic spectrum line width (reflectance intensity of 91.2%) and better FWHM of 3.08°. The measured results also indicate that the Cu-graphene SPR-based sensor is suitable for detecting urea with refractive index of 1.49 in dielectric medium.\",\"PeriodicalId\":169983,\"journal\":{\"name\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2016.7573642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2016.7573642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Copper-graphene SPR-based biosensor for urea detection
This paper is intended to investigate the copper-graphene surface plasmon resonance (SPR)-based biosensor by considering the high adsorption efficiency of graphene. Copper (Cu) is used as a plasmonic material whereas graphene is used to prevent Cu from oxidation and enhance the reflectance intensity. Numerical investigation is performed using finite-difference-time-domain (FDTD) method by comparing the sensing performance such as reflectance intensity that explains the sensor sensitivity and the full-width-at-half-maximum (FWHM) of the spectrum for detection accuracy. The measurements were observed with various Cu thin film thicknesses ranging from 20nm to 80nm with 785nm operating wavelength. The proposed sensor shows that the 40nm-thick Cu-graphene (1 layer) SPR-based sensor gave better performance with narrower plasmonic spectrum line width (reflectance intensity of 91.2%) and better FWHM of 3.08°. The measured results also indicate that the Cu-graphene SPR-based sensor is suitable for detecting urea with refractive index of 1.49 in dielectric medium.