富协变量聚合离散选择模型的BLP-LASSO

B. Gillen, Sergio Montero, H. Moon, M. Shum
{"title":"富协变量聚合离散选择模型的BLP-LASSO","authors":"B. Gillen, Sergio Montero, H. Moon, M. Shum","doi":"10.2139/ssrn.2700775","DOIUrl":null,"url":null,"abstract":"We introduce the BLP-LASSO model, which augments the classic BLP (Berry, Levinsohn, and Pakes, 1995) random-coefficients logit model to allow for data-driven selection among a high- dimensional set of control variables. Economists often study consumers’ aggregate behavior across markets choosing from a menu of differentiated products. In this analysis, local demo- graphic characteristics can serve as controls for market-specific preference heterogeneity. Given rich demographic data, implementing these models requires specifying which variables to include in the analysis, an ad hoc process typically guided primarily by a researcher’s intuition. We pro- pose a data-driven approach to estimate these models applying penalized estimation algorithms imported from the machine learning literature that are known to be valid for uniform inferences with respect to variable selection. Our application explores the effect of campaign spending on vote shares in data from Mexican elections.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BLP-LASSO for Aggregate Discrete Choice Models with Rich Covariates\",\"authors\":\"B. Gillen, Sergio Montero, H. Moon, M. Shum\",\"doi\":\"10.2139/ssrn.2700775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the BLP-LASSO model, which augments the classic BLP (Berry, Levinsohn, and Pakes, 1995) random-coefficients logit model to allow for data-driven selection among a high- dimensional set of control variables. Economists often study consumers’ aggregate behavior across markets choosing from a menu of differentiated products. In this analysis, local demo- graphic characteristics can serve as controls for market-specific preference heterogeneity. Given rich demographic data, implementing these models requires specifying which variables to include in the analysis, an ad hoc process typically guided primarily by a researcher’s intuition. We pro- pose a data-driven approach to estimate these models applying penalized estimation algorithms imported from the machine learning literature that are known to be valid for uniform inferences with respect to variable selection. Our application explores the effect of campaign spending on vote shares in data from Mexican elections.\",\"PeriodicalId\":165362,\"journal\":{\"name\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2700775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2700775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们引入了BLP- lasso模型,它增强了经典的BLP (Berry, Levinsohn, and Pakes, 1995)随机系数logit模型,以允许在高维控制变量集中进行数据驱动的选择。经济学家经常研究消费者在不同市场中选择不同产品的总体行为。在这个分析中,当地的人口特征可以作为市场偏好异质性的控制因素。考虑到丰富的人口统计数据,实现这些模型需要指定在分析中包含哪些变量,这是一个特别的过程,通常主要由研究人员的直觉指导。我们提出了一种数据驱动的方法来估计这些模型,应用从机器学习文献中引入的惩罚估计算法,这些算法已知对变量选择的统一推断是有效的。我们的应用程序探讨了墨西哥选举数据中竞选支出对投票份额的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BLP-LASSO for Aggregate Discrete Choice Models with Rich Covariates
We introduce the BLP-LASSO model, which augments the classic BLP (Berry, Levinsohn, and Pakes, 1995) random-coefficients logit model to allow for data-driven selection among a high- dimensional set of control variables. Economists often study consumers’ aggregate behavior across markets choosing from a menu of differentiated products. In this analysis, local demo- graphic characteristics can serve as controls for market-specific preference heterogeneity. Given rich demographic data, implementing these models requires specifying which variables to include in the analysis, an ad hoc process typically guided primarily by a researcher’s intuition. We pro- pose a data-driven approach to estimate these models applying penalized estimation algorithms imported from the machine learning literature that are known to be valid for uniform inferences with respect to variable selection. Our application explores the effect of campaign spending on vote shares in data from Mexican elections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assortment Optimization and Pricing Under the Threshold-Based Choice Models Robust Techniques to Estimate Parameters of Linear Models Identification of Random Coefficient Latent Utility Models An Algorithm for Assortment Optimization Under Parametric Discrete Choice Models Equivalent Choice Functions and Stable Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1