一种鲁棒实时手部检测与跟踪方法

Bowen Tang, Xukun Shen, Yong Hu, Qing Fan
{"title":"一种鲁棒实时手部检测与跟踪方法","authors":"Bowen Tang, Xukun Shen, Yong Hu, Qing Fan","doi":"10.1109/ICVRV.2017.00056","DOIUrl":null,"url":null,"abstract":"We present a robust method for detecting and tracking the human hand in real-time with a single depth camera. Before tracking the hand, we always need to find the appropriate region of hand in depth map obtained by the camera. Our system utilizes the segmentation depth information to look for the candidate hand regions, and gets a more accurate hand region with auxiliary RGB information. Even when it is not the nearest part than other body regions, we can also detect the hand region accurately. Therefore we make fewer assumptions about hand detection. Based on this, we track the human hand by fitting a virtual 3D hand model to preprocessed depth maps. We treat this as an optimization problem which needs to seek the parameters to make sure that the energy function can get minimum values. Our energy function combines 3D/2D information with shape prior and kinematic priors, and keeps the frame smooth by adding temporal smoothness constraint. The objective function is solved effectively using Gauss-Newton method. The relevant experiments demonstrate the accurate hand detection and robust hand tracking in our system.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Real-Time Hand Detection and Tracking\",\"authors\":\"Bowen Tang, Xukun Shen, Yong Hu, Qing Fan\",\"doi\":\"10.1109/ICVRV.2017.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a robust method for detecting and tracking the human hand in real-time with a single depth camera. Before tracking the hand, we always need to find the appropriate region of hand in depth map obtained by the camera. Our system utilizes the segmentation depth information to look for the candidate hand regions, and gets a more accurate hand region with auxiliary RGB information. Even when it is not the nearest part than other body regions, we can also detect the hand region accurately. Therefore we make fewer assumptions about hand detection. Based on this, we track the human hand by fitting a virtual 3D hand model to preprocessed depth maps. We treat this as an optimization problem which needs to seek the parameters to make sure that the energy function can get minimum values. Our energy function combines 3D/2D information with shape prior and kinematic priors, and keeps the frame smooth by adding temporal smoothness constraint. The objective function is solved effectively using Gauss-Newton method. The relevant experiments demonstrate the accurate hand detection and robust hand tracking in our system.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2017.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种鲁棒的方法来检测和跟踪人手的实时单深度相机。在跟踪手部之前,我们总是需要在相机获得的深度图中找到合适的手部区域。我们的系统利用分割深度信息寻找候选手部区域,并辅以RGB信息得到更精确的手部区域。即使它不是最接近身体其他部位的部位,我们也可以准确地检测到手区域。因此我们对手的检测做了更少的假设。在此基础上,我们通过将虚拟三维手部模型拟合到预处理深度图中来跟踪人手。我们将其视为一个优化问题,需要寻找参数以确保能量函数能得到最小值。我们的能量函数将三维/二维信息与形状先验和运动先验相结合,并通过添加时间平滑约束来保持帧的平滑性。采用高斯-牛顿法对目标函数进行了有效求解。实验结果表明,该系统具有较好的手部检测精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Robust Real-Time Hand Detection and Tracking
We present a robust method for detecting and tracking the human hand in real-time with a single depth camera. Before tracking the hand, we always need to find the appropriate region of hand in depth map obtained by the camera. Our system utilizes the segmentation depth information to look for the candidate hand regions, and gets a more accurate hand region with auxiliary RGB information. Even when it is not the nearest part than other body regions, we can also detect the hand region accurately. Therefore we make fewer assumptions about hand detection. Based on this, we track the human hand by fitting a virtual 3D hand model to preprocessed depth maps. We treat this as an optimization problem which needs to seek the parameters to make sure that the energy function can get minimum values. Our energy function combines 3D/2D information with shape prior and kinematic priors, and keeps the frame smooth by adding temporal smoothness constraint. The objective function is solved effectively using Gauss-Newton method. The relevant experiments demonstrate the accurate hand detection and robust hand tracking in our system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1