基于监督学习的判别特征融合策略

Junbao Li, S. Chu, Jung-Chou Harry Chang, Jeng-Shyang Pan
{"title":"基于监督学习的判别特征融合策略","authors":"Junbao Li, S. Chu, Jung-Chou Harry Chang, Jeng-Shyang Pan","doi":"10.1109/IIH-MSP.2006.88","DOIUrl":null,"url":null,"abstract":"An efficient fusion strategy called discriminant feature fusion strategy for supervised learning is proposed to seek the optimal fusion coefficients of feature fusion. Contributions of this paper lie in: 1) creating a constrained optimization problem based on maximum margin criterion for solving the optimal fusion coefficients, which causes that fused data has the largest class discriminant in the fused feature space; 2) keeping an unique solution of optimization problem by transforming the optimization problem to an eigenvalue problem, which causes the fusion strategy to reach a consistent performance. Besides of the detailed theory derivation, many experimental evaluations also are presented in this paper.","PeriodicalId":272579,"journal":{"name":"2006 International Conference on Intelligent Information Hiding and Multimedia","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discriminant Feature Fusion Strategy for Supervised Learning\",\"authors\":\"Junbao Li, S. Chu, Jung-Chou Harry Chang, Jeng-Shyang Pan\",\"doi\":\"10.1109/IIH-MSP.2006.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient fusion strategy called discriminant feature fusion strategy for supervised learning is proposed to seek the optimal fusion coefficients of feature fusion. Contributions of this paper lie in: 1) creating a constrained optimization problem based on maximum margin criterion for solving the optimal fusion coefficients, which causes that fused data has the largest class discriminant in the fused feature space; 2) keeping an unique solution of optimization problem by transforming the optimization problem to an eigenvalue problem, which causes the fusion strategy to reach a consistent performance. Besides of the detailed theory derivation, many experimental evaluations also are presented in this paper.\",\"PeriodicalId\":272579,\"journal\":{\"name\":\"2006 International Conference on Intelligent Information Hiding and Multimedia\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Intelligent Information Hiding and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIH-MSP.2006.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Intelligent Information Hiding and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2006.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种有效的基于监督学习的判别特征融合策略,以寻求特征融合的最优融合系数。本文的贡献在于:1)提出了基于最大裕度准则求解最优融合系数的约束优化问题,使得融合数据在融合特征空间中具有最大的类判别式;2)通过将优化问题转化为特征值问题,保持优化问题的唯一解,使融合策略达到一致的性能。本文除了详细的理论推导外,还进行了大量的实验评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminant Feature Fusion Strategy for Supervised Learning
An efficient fusion strategy called discriminant feature fusion strategy for supervised learning is proposed to seek the optimal fusion coefficients of feature fusion. Contributions of this paper lie in: 1) creating a constrained optimization problem based on maximum margin criterion for solving the optimal fusion coefficients, which causes that fused data has the largest class discriminant in the fused feature space; 2) keeping an unique solution of optimization problem by transforming the optimization problem to an eigenvalue problem, which causes the fusion strategy to reach a consistent performance. Besides of the detailed theory derivation, many experimental evaluations also are presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adjustable multipath flatted-hexagon search algorithm for block motion estimation An Improved Design and Implementation of Chinese Name Card Recognition System on Mobile Devices A Novel Low-IF Topology for High Performance Integrated Receivers Improved Guided Position Scrambling for Digital Watermarking Decoder-Friendly Subpel MV Selection for H.264/AVC Video Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1