Injoon Hong, Dongjoo Shin, Youchang Kim, Kyeongryeol Bong, Seongwook Park, K. Lee, H. Yoo
{"title":"基于注视激活图像传感器的移动智能眼镜关键点级并行流水线目标识别处理器","authors":"Injoon Hong, Dongjoo Shin, Youchang Kim, Kyeongryeol Bong, Seongwook Park, K. Lee, H. Yoo","doi":"10.1109/CoolChips.2015.7158531","DOIUrl":null,"url":null,"abstract":"In this paper, a low-power real-time gaze-activated object recognition processor is proposed for a battery-powered smart glasses system. For high energy efficiency, we propose keypoint-level pipelined architecture to increase the hardware utilziation which results in significant power reduction of the real-time recognition processor. In addition, low-power gaze-activation image sensor with mixed-mode architecture is proposed for the glass user's gaze estimation. Therefore, only the small image region where the glasses user is seeing needs to be processed by the recognition processor leading to further power reduction. As a result, the proposed object recognition processor shows 30fps real-time performance only with 75mW power consumption, which is 3.5x and 4.4x smaller power than the state-of-the-art works.","PeriodicalId":358999,"journal":{"name":"2015 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XVIII)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A keypoint-level parallel pipelined object recognition processor with gaze activation image sensor for mobile smart glasses system\",\"authors\":\"Injoon Hong, Dongjoo Shin, Youchang Kim, Kyeongryeol Bong, Seongwook Park, K. Lee, H. Yoo\",\"doi\":\"10.1109/CoolChips.2015.7158531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a low-power real-time gaze-activated object recognition processor is proposed for a battery-powered smart glasses system. For high energy efficiency, we propose keypoint-level pipelined architecture to increase the hardware utilziation which results in significant power reduction of the real-time recognition processor. In addition, low-power gaze-activation image sensor with mixed-mode architecture is proposed for the glass user's gaze estimation. Therefore, only the small image region where the glasses user is seeing needs to be processed by the recognition processor leading to further power reduction. As a result, the proposed object recognition processor shows 30fps real-time performance only with 75mW power consumption, which is 3.5x and 4.4x smaller power than the state-of-the-art works.\",\"PeriodicalId\":358999,\"journal\":{\"name\":\"2015 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XVIII)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XVIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoolChips.2015.7158531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XVIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoolChips.2015.7158531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A keypoint-level parallel pipelined object recognition processor with gaze activation image sensor for mobile smart glasses system
In this paper, a low-power real-time gaze-activated object recognition processor is proposed for a battery-powered smart glasses system. For high energy efficiency, we propose keypoint-level pipelined architecture to increase the hardware utilziation which results in significant power reduction of the real-time recognition processor. In addition, low-power gaze-activation image sensor with mixed-mode architecture is proposed for the glass user's gaze estimation. Therefore, only the small image region where the glasses user is seeing needs to be processed by the recognition processor leading to further power reduction. As a result, the proposed object recognition processor shows 30fps real-time performance only with 75mW power consumption, which is 3.5x and 4.4x smaller power than the state-of-the-art works.