指数多项式信号的估计与统计分析

S. Golden, B. Friedlander
{"title":"指数多项式信号的估计与统计分析","authors":"S. Golden, B. Friedlander","doi":"10.1109/ICASSP.1995.480082","DOIUrl":null,"url":null,"abstract":"In this paper we approximate arbitrary complex signals by modeling both the logarithm of the amplitude and the phase of the complex signal as finite-order polynomials in time. We refer to a signal of this type as an exponential polynomial signal (EPS). We propose an algorithm to estimate any desired coefficient for this signal model. We also show how the mean-squared error of the estimate can be determined by using a first-order perturbation analysis. A Monte Carlo simulation is used to verify the validity of the perturbation analysis. The performance of the algorithm is illustrated by comparing the mean-squared error of the estimate to the Cramer-Rao bound for a particular example.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Estimation and statistical analysis for exponential polynomial signals\",\"authors\":\"S. Golden, B. Friedlander\",\"doi\":\"10.1109/ICASSP.1995.480082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we approximate arbitrary complex signals by modeling both the logarithm of the amplitude and the phase of the complex signal as finite-order polynomials in time. We refer to a signal of this type as an exponential polynomial signal (EPS). We propose an algorithm to estimate any desired coefficient for this signal model. We also show how the mean-squared error of the estimate can be determined by using a first-order perturbation analysis. A Monte Carlo simulation is used to verify the validity of the perturbation analysis. The performance of the algorithm is illustrated by comparing the mean-squared error of the estimate to the Cramer-Rao bound for a particular example.\",\"PeriodicalId\":300119,\"journal\":{\"name\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1995.480082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.480082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文通过将复信号的幅值和相位的对数在时间上建模为有限阶多项式来逼近任意复信号。我们把这种类型的信号称为指数多项式信号(EPS)。我们提出了一种算法来估计该信号模型的任何期望系数。我们还展示了如何通过使用一阶扰动分析来确定估计的均方误差。通过蒙特卡罗仿真验证了摄动分析的有效性。通过比较估计的均方误差与特定示例的Cramer-Rao界来说明算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation and statistical analysis for exponential polynomial signals
In this paper we approximate arbitrary complex signals by modeling both the logarithm of the amplitude and the phase of the complex signal as finite-order polynomials in time. We refer to a signal of this type as an exponential polynomial signal (EPS). We propose an algorithm to estimate any desired coefficient for this signal model. We also show how the mean-squared error of the estimate can be determined by using a first-order perturbation analysis. A Monte Carlo simulation is used to verify the validity of the perturbation analysis. The performance of the algorithm is illustrated by comparing the mean-squared error of the estimate to the Cramer-Rao bound for a particular example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language identification with phonological and lexical models Computationally efficient wavelet packet coding of wide-band stereo audio signals Signaling techniques using solitons Blind source detection and separation using second order non-stationarity On blind channel identification for impulsive signal environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1