基于声学和词汇特征的印尼语语音情感识别

Pipin Kurniawati, D. Lestari, M. L. Khodra
{"title":"基于声学和词汇特征的印尼语语音情感识别","authors":"Pipin Kurniawati, D. Lestari, M. L. Khodra","doi":"10.1109/ICSDA.2017.8384467","DOIUrl":null,"url":null,"abstract":"This paper describes our works to extend the previous work on emotion recognition for Indonesian spoken language. In this research, we construct an Indonesian emotional corpus (IDEC). In constructing the corpus, we aim at natural emotional occurrences from television talk shows. IDEC is utilized to construct the emotion recognizer using two main features, acoustic and lexical features. The Support Vector Machine (SVM), Random Forest (RF), and Multinomial Naive Bayes (MNB) algorithms are employed to model the emotions. Experiment result shows that SVM outperforms the RF and MNB algorithms. It achieves an average F- measure of 0.713 for 6 emotion classes by combining both acoustic and lexical features.","PeriodicalId":255147,"journal":{"name":"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Speech emotion recognition from Indonesian spoken language using acoustic and lexical features\",\"authors\":\"Pipin Kurniawati, D. Lestari, M. L. Khodra\",\"doi\":\"10.1109/ICSDA.2017.8384467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our works to extend the previous work on emotion recognition for Indonesian spoken language. In this research, we construct an Indonesian emotional corpus (IDEC). In constructing the corpus, we aim at natural emotional occurrences from television talk shows. IDEC is utilized to construct the emotion recognizer using two main features, acoustic and lexical features. The Support Vector Machine (SVM), Random Forest (RF), and Multinomial Naive Bayes (MNB) algorithms are employed to model the emotions. Experiment result shows that SVM outperforms the RF and MNB algorithms. It achieves an average F- measure of 0.713 for 6 emotion classes by combining both acoustic and lexical features.\",\"PeriodicalId\":255147,\"journal\":{\"name\":\"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSDA.2017.8384467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSDA.2017.8384467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了我们在印尼语口语情感识别方面的工作。在本研究中,我们建构了一个印尼语情感语料库(IDEC)。在构建语料库时,我们以电视谈话节目中的自然情感事件为目标。利用IDEC技术,利用声学和词汇两个主要特征来构建情感识别器。采用支持向量机(SVM)、随机森林(RF)和多项朴素贝叶斯(MNB)算法对情绪进行建模。实验结果表明,SVM算法优于RF算法和MNB算法。结合声学特征和词汇特征,对6个情感类别的平均F-测量值为0.713。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speech emotion recognition from Indonesian spoken language using acoustic and lexical features
This paper describes our works to extend the previous work on emotion recognition for Indonesian spoken language. In this research, we construct an Indonesian emotional corpus (IDEC). In constructing the corpus, we aim at natural emotional occurrences from television talk shows. IDEC is utilized to construct the emotion recognizer using two main features, acoustic and lexical features. The Support Vector Machine (SVM), Random Forest (RF), and Multinomial Naive Bayes (MNB) algorithms are employed to model the emotions. Experiment result shows that SVM outperforms the RF and MNB algorithms. It achieves an average F- measure of 0.713 for 6 emotion classes by combining both acoustic and lexical features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature selection method for real-time speech emotion recognition Spectral analysis of English voiced palato-alveolar fricative /Ʒ/ produced by Chinese WU Speakers Corpus-based evaluation of Chinese text normalization Acoustic analysis of vowels in five low resource north East Indian languages of Nagaland A progress report of the Taiwan Mandarin radio speech corpus project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1