A. Quirin, J. Korczak, Martin Volker Butz, D. Goldberg
{"title":"学习分类器系统在高光谱图像分类中的应用分析与评价","authors":"A. Quirin, J. Korczak, Martin Volker Butz, D. Goldberg","doi":"10.1109/ISDA.2005.23","DOIUrl":null,"url":null,"abstract":"In this article, two learning classifier systems based on evolutionary techniques are described to classify remote sensing images. Usually, these images contain voluminous, complex, and sometimes erroneous and noisy data. The first approach implements ICU, an evolutionary rule discovery system, generating simple and robust rules. The second approach applies the real-valued accuracy-based classification system XCSR. The two algorithms are detailed and validated on hyperspectral data.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis and evaluation of learning classifier systems applied to hyperspectral image classification\",\"authors\":\"A. Quirin, J. Korczak, Martin Volker Butz, D. Goldberg\",\"doi\":\"10.1109/ISDA.2005.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, two learning classifier systems based on evolutionary techniques are described to classify remote sensing images. Usually, these images contain voluminous, complex, and sometimes erroneous and noisy data. The first approach implements ICU, an evolutionary rule discovery system, generating simple and robust rules. The second approach applies the real-valued accuracy-based classification system XCSR. The two algorithms are detailed and validated on hyperspectral data.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and evaluation of learning classifier systems applied to hyperspectral image classification
In this article, two learning classifier systems based on evolutionary techniques are described to classify remote sensing images. Usually, these images contain voluminous, complex, and sometimes erroneous and noisy data. The first approach implements ICU, an evolutionary rule discovery system, generating simple and robust rules. The second approach applies the real-valued accuracy-based classification system XCSR. The two algorithms are detailed and validated on hyperspectral data.